

SH153

.Un533

Studie

Summer of the second se

ZIDILC.

(voarsital

.

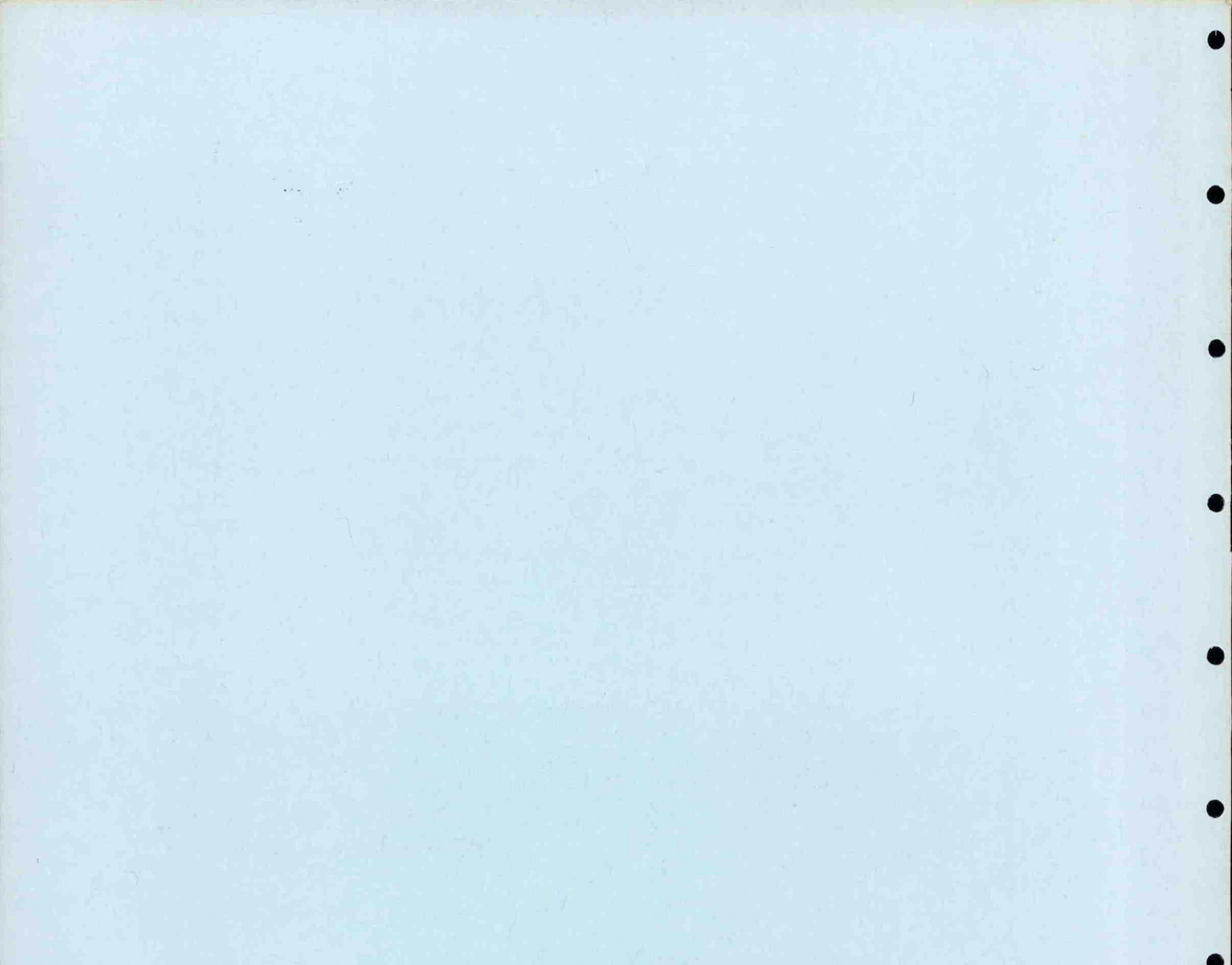
.

0

.

AND

REVIEW OF NITROGEN STUDIES RELATING TO PROTECTION OF JUVENILE SALMONIDS IN THE COLUMBIA AND SNAKE RIVERS, 1976


> Library Northwest Fisheries Center 2725 Montlake Boulevard, E. Seattle, Washington 98112

Donn L. Park, Jim Ross Smith, Emil Slatick, George A. Swan, Earl M. Dawley and Gene M. Matthews

by

March 1977

Final Report of Research Financed By U.S. Army Corps of Engineers (Contract No. DACW68-75-C-0111)

and

Northwest and Alaska Fisherics Center Division of Coastal Zone and Estuarine Studies 2725 Montlake Boulevard East Scattle, Washington 98112

Library Northwest Fisheries Center 2725 Montlake Boulevard, E Seattle, Washington 98112

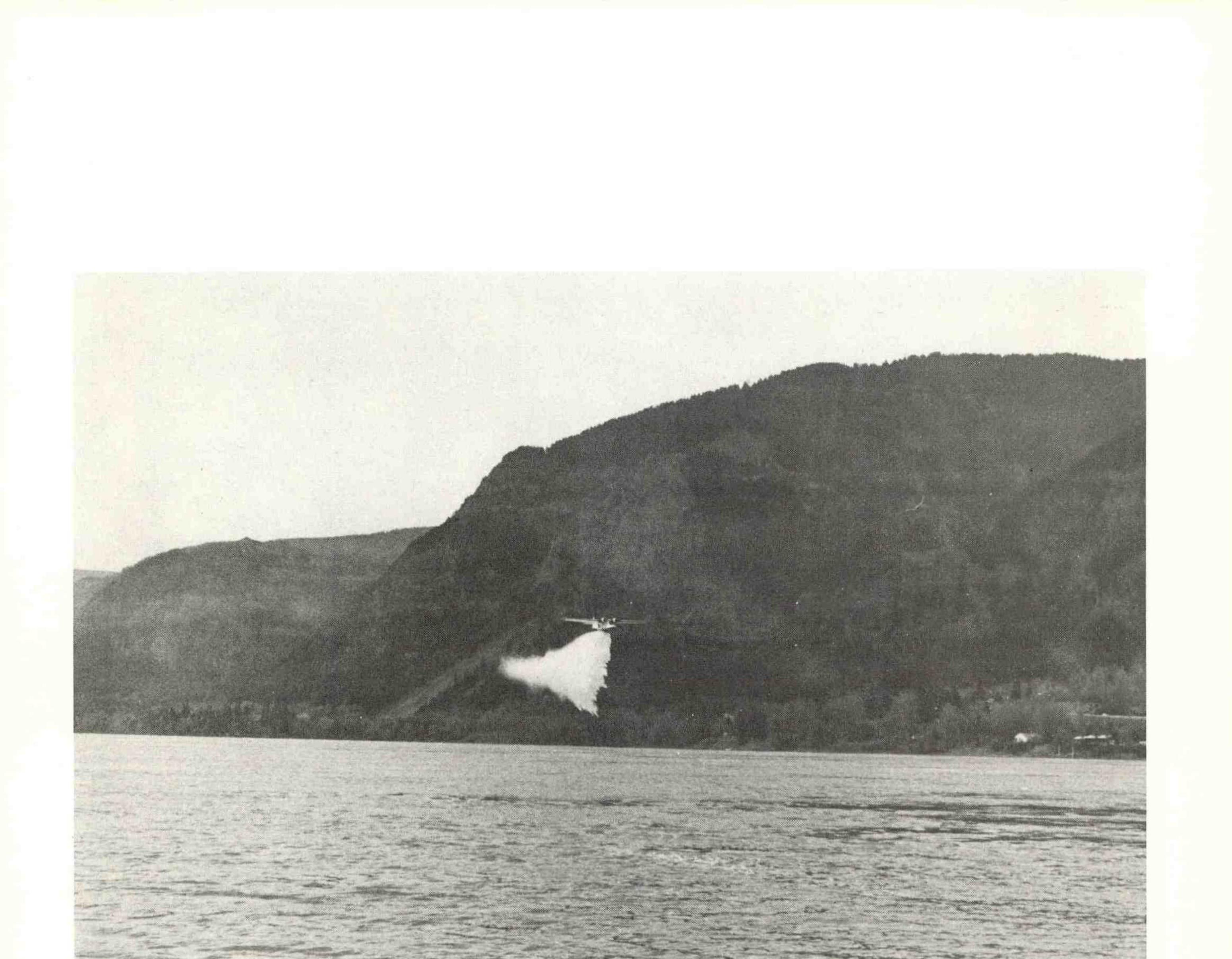
EVALUATION OF FISH PROTECTIVE FACILITIES AT LITTLE GOOSE AND LOWER GRANITE DAMS AND REVIEW OF NITROGEN STUDIES RELATING TO PROTECTION OF JUVENILE SALMONIDS

0

.

IN THE COLUMBIA AND SNAKE RIVERS, 1976

by


Donn L. Park, Jim Ross Smith, Emil Slatick, George A. Swan, Earl M. Dawley, and Gene M. Matthews

> Final Report of Research Financed By U.S. Army Corps of Engineers (Contract No. DACW68-75-C-0111)

and

Northwest and Alaska Fisheries Center Division of Coastal Zone and Estuarine Studies 2725 Montlake Boulevard East Seattle, Washington 98112

Air release of juvenile chinook salmon from PBY aircraft into Columbia River (5 miles below Bonneville Dam) after $1-\frac{1}{2}$ hour flight from Lower Granite Dam.

•

	Page
INTRODUCTION	1
MASS TRANSPORT OF SMOLTS	
	2
RESEARCH - LOWER GRANITE DAM	3
FINGERLING TRANSPORTATION EXPERIMENTS - TRUCK	3
Experimental Design	5
Procedures	6
Numbers and Condition of Smolts Transported	7
Disease Monitoring	10
FINGERLING TRANSPORTATION EXPERIMENTS - AIR	13
TRAVELING SCREEN AND ORIFICE BYPASS STUDIES	16
Standard Traveling Screen	16
Spring Tests and Results	16
Fall Tests and Results	19
Adjustable Angle Traveling Screen	19
Spring Tests and Results	19
Fall Tests	22
Procedures	23
Resultsadjustable angle screen modified	
with 48% plate	24
Resultsadjustable angle screen modified	
with 33% plate	26
Orifice Bypass	26
Recommendations	28
Traveling Screens	28
Orifice Bypass	29
RESEARCH - LITTLE GOOSE DAM	29
MASS TRANSPORTATION EXPERIMENTS	29
Experimental Design and Procedures	29
Number and Condition of Smolts Transported	30
RETURN OF ADULTS FROM THE 1975 OUTMIGRATION	35
RETURN OF ADULTS FROM THE 1973 OUTMIGRATION	36
DISSOLVED GAS (N_) STUDIES - 1976	20
DISSOLVED GAS (N ₂) STUDIES - 1976 MONITORING THE N ₂ SUPERSATURATION	39
EFFECT OF SPILL DEFLECTORS AT LITTLE GOOSE DAM	40
EFFECT OF SPILL DEFLECTORS AT MCNARY DAM	41
	41
SUMMARY	44
APPENDIX	48
	101125

CONTENTS

1

•

•

•

•

•

*

INTRODUCTION

•

.

•

•

•

•

•

.

During 1976, the National Marine Fisheries Service (NMFS), under contract to the U.S. Army Corps of Engineers, continued to evaluate the following: (1) fish protective facilities for juvenile salmonids at Lower Granite and Little Goose Dams, (2) a mass transportation system for increasing survival of downstream migrant salmonids, and (3)

dissolved gas abatement procedures in the Columbia and Snake Rivers. At Lower Granite Dam, emphasis was placed on traveling screen research and collection of smolts and their transportation by truck and aircraft. It is important to determine if transportation, found to be successful at Little Goose Dam, can be successfully employed further upstream nearer the smolt rearing areas. Experiments were also designed to determine if salt water is beneficial in alleviating stresses during transport, thereby increasing survival to the sea.

Traveling screen research involved tests with the standard traveling

screen and an adjustable angle traveling screen designed by the Corps of Engineers. Tests were made with the standard screen located in the bulkhead slot, and the adjustable angle screen located in the bulkhead slot and the fish screen slot. At Little Goose Dam, emphasis was placed on evaluating the mass transportation of juvenile salmonids. A portion of the smolts transported to Bonneville Dam were marked and some groups were hauled in salt water. We also continued to recover adults returning upriver from juvenile migrations marked and transported from Little Goose Dam in 1973 and

from Lower Granite Dam in 1975.

Throughout the study area, we also conducted research relating to the following: (1) the effects of stress on chinook salmon--includes data on descaling, gas bubble disease, and contagious diseases and (2) the levels of dissolved gasses in the Columbia and Snake Rivers especially as related to spillway flow deflectors at Little Goose and

McNary Dams.

MASS TRANSPORT OF SMOLTS

Mass transportation of smolts continues to be a practical way to reduce losses of juvenile salmonids during their downstream migration. Emergency mass transport of 549,000 juvenile steelhead was initiated at Little Goose Dam in 1975. In 1976 the fishery agencies approved mass hauling of up to 50% of the total outmigration of both juvenile chinook salmon and steelhead trout from Lower Granite and Little Goose Dams to

release locations below Bonneville Dam.

To evaluate the success of mass transport in 1976, a sample of the total number of hauled fingerlings from each dam was tagged with coded wire tags, branded, and adipose fin clipped. Each test group was marked with a distinctive tag code and brand symbol. Subsequent returns of marked adults to the fishery, the adult separator at Lower Granite Dam, and to hatcheries will provide data on the contribution of transported fish to the total run. Approximately 1.2 million fingerlings collected at Lower Granite

and Little Goose Dams were transported to the river below Bonneville

The 751,000 chinook salmon and 435,000 steelhead trout Dam in 1976.

smolts represented about 15% of the total outmigration from the Snake River. High runoff, as in 1975, reduced our collection capability. Most of the outmigration passed over the spillways rather than through the screened turbine intakes. A summary of the numbers of smolts transported and the percent of the total outmigration hauled each year since 1971 is given in Table 1. Specifics on numbers of marked

and unmarked fish hauled from each dam may be found in the respective

sections of the report titled, "Research - Lower Granite Dam" and

"Research - Little Goose Dam."

.

•

•

•

•

.

RESEARCH - LOWER GRANITE DAM

FINGERLING TRANSPORTATION EXPERIMENTS - TRUCK

Prior to the beginning of the downstream migration period, modifications and changes were made to the collection and marking facility that improved operations. Collection and subsequent marking of

juveniles was enhanced by operation of six standard traveling screens strategically placed in three operating units. This was the first year that collection was available from three units in service throughout the fingerling migration. Last year we had only three screens, and they were used in a single operating unit. Modifications were made to the fingerling sorter assembly which permitted a consistent automatic operation for sorting and removing debris. Modifications were also made at the marking facility which permitted a smooth gravity flow of

fish from the dam to the facility and from the facility to the transport

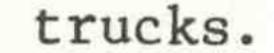
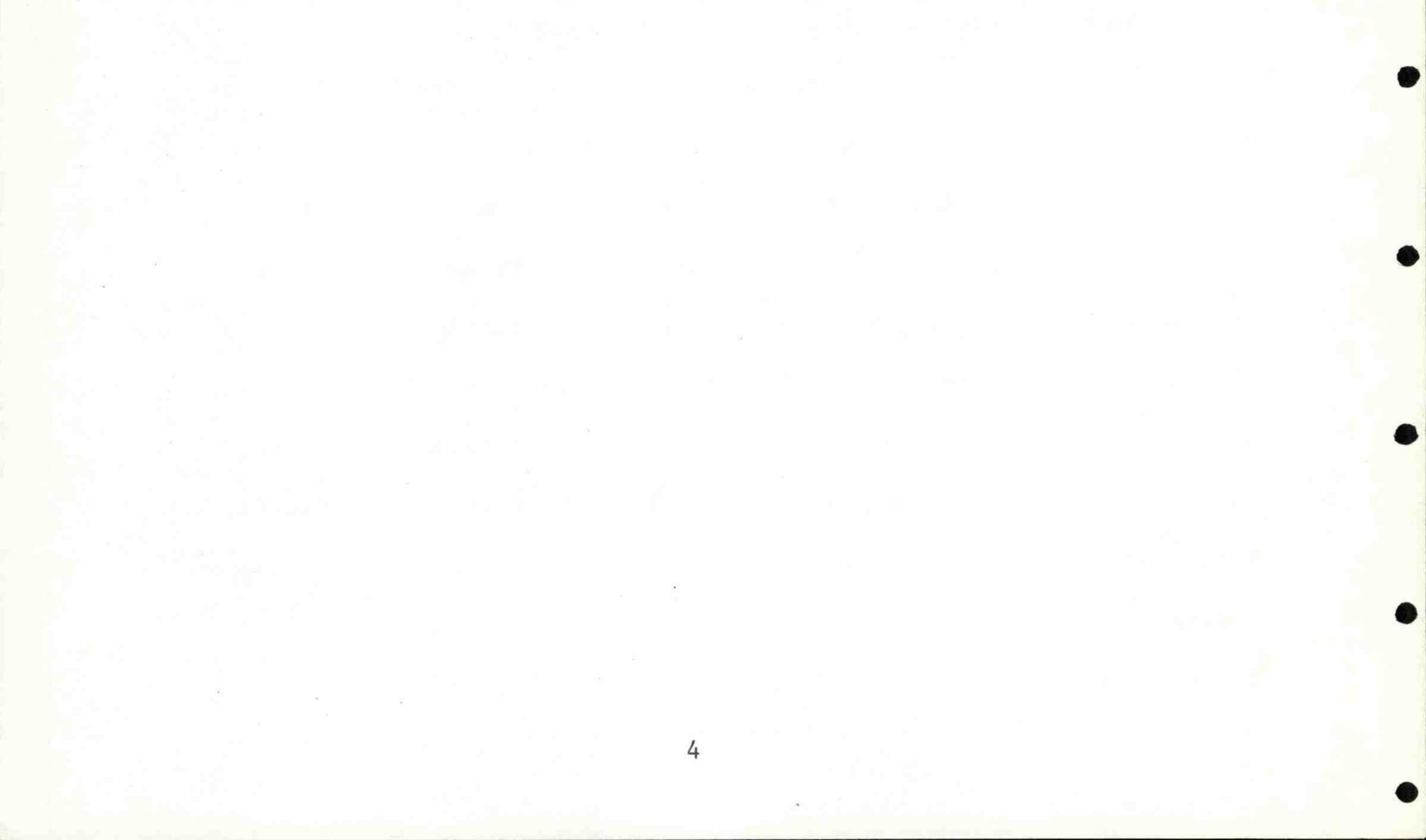



Table 1.--Number of smolts and percent of total Snake River outmigration transported below Bonneville Dam 1971-76.

 Chinook Smolts			steelhead Smolts		
No. at upper dam (1,000)	No. hauled (1,000)	% hauled	No. at upper dam (1,000)	No. hauled $(1,000)$	% hauled

1976	5000	751	15%	3200	435	14%
1975	4000	414	10%	3200	549	17%
1974	3500	0	0	5000	0	0
1973	5000	247	5%	5500	176	3%
1972	5000	360	7%	2500	227	9%
1971	4000	109	3%	5500	154	3%

This years research began at Lower Granite Dam on April 14 when the first fingerlings became available for marking. The objective of the research was to determine whether large numbers of juvenile salmonids could be transported from Lower Granite Dam to locations below Bonneville Dam without extensive mortality or loss of homing

ability--thus increasing survival and subsequent returns to parent

streams. It is especially important to test the transport concept at Lower Granite Dam because of its proximity to nearby rearing areas. If smolts are collected and transported too soon after they begin their seaward migration, it is conceivable that homing could be destroyed or impaired, resulting in increased straying as adults.

Experimental Design

Data from studies initiated in 1975 indicated a potential benefit

from hauling chinook fingerlings in a mild saline solution (5 ppt).

To measure actual benefits in terms of adult returns, half of the fish marked and transported below Bonneville Dam in 1976 were hauled in 5 ppt salt water and half in fresh water. Through May 5, test groups were released at the Washington Department of Game boat launch site one mile below Bonneville Dam. After May 5, the boat launch site was inaccessible and truck releases were made near the powerhouse. Control groups, all hauled in fresh water, were released near Clarkston, Washington, at the Port of Clarkston barge facility on the south shore of the Snake River. Separate brands and coded tags were used to identify

fish by specific release site and whether they were hauled in fresh or

salt water.

•

.

•

.

•

•

.

Evaluation of the survival and homing ability of each group will be based on adult returns to the following: (1) various Columbia River commercial fisheries, (2) the sport fishery, (3) the adult separator at Little Goose or Lower Granite Dams, (4) hatcheries, and (5) native spawning grounds.

Procedures

Fish were diverted, collected, and handled in the same manner as

last year. All fingerlings used in our tests were tagged with coded magnetic wire tags, branded, and adipose fin clipped. Each test group was marked with a distinctive tag code and brand symbol. At the marking facility we monitored descaling daily as an

indicator of injury to smolts passing through the bypass-collection

system. Descaling rate in the marking building provided a total injury

factor. An injury factor for the bypass and collection facility could

be established by subtracting the descaling noted in the gatewells from

the descaling rate observed in the marking building.

Steelhead trout and chinook salmon were hauled simultaneously but in separate compartments in both 3500 and 5000-gallon tankers. Fish transported in fresh water were treated in a disinfectant bath of Malachite green prior to leaving the marking building. A mild anesthetic (1 ppm quinaldine) was added to all freshwater hauls. When hauls were made in salt water (5 ppt), the saline solution was maintained during marking and loading operations. Routine water quality observations were

made after transport, and samples of fish were taken from the truck

6

for delayed mortality observations (45-hour).

Diversion, collection, marking, and transportion all place a degree of stress on fingerlings. Measures of descaling and delayed mortality provide criteria for assessment of this stress. Monitoring these parameters on smolts hauled each year from both Lower Granite and Little Goose Dams provides an index of fish condition in relation

.

•

•

•

.

to efforts to reduce stress.

Number and Condition of Smolts Transported

About 650,000 smolts were handled at the fingerling collection facility in 1976. Of these, 238,974 chinook salmon and 165,828 steelhead trout were marked for various transportation experiments (Table 2). The remaining 140,637 chinook salmon and 101,875 steelhead trout were transported unmarked to below Bonneville Dam (Table 3). Appendix Tables 1 through 4 contain a detailed summary of all transportation releases. The condition of smolts hauled from Lower Granite Dam in 1976 was

much better than the condition of those hauled from Lower Granite Dam in 1975 or from Little Goose Dam in 1976. Average descaling rate measured for chinook salmon at the fish marking facility was 7% (range 4 to 13%). Half, or 3.5%, was attributable to traveling screens and half to the bypass and collection facility. Measurements in 1975 were nearly double these figures--13% total, (6.4% traveling screens and 6.6% bypass and collection facility).

Delayed mortality on marked chinook salmon hauled in fresh water averaged 4.7% in 1976, down considerably from the 11.5% measured in

Delayed mortality on marked steelhead trout was negligible in 1975.

both years.

Table 2.--Summary of fingerlings collected and marked at Lower Granite Dam and transported to Bonneville Dam and estuary release sites (test) or released near Clarkston, Washington (control), 1976.

Release site and transport	Chinook	Steelhead
conditions	No.	No.

Dennerillo Dent Denn (Thursda)

Bonneville - Boat Ramp (Truck)		
Salt water	45,476	16,504
Fresh water	47,507	7,304
Bonneville - Powerhouse (Truck)		
Salt water	15,970	52,641
Fresh water	25,421	47,392
Beacon Rock (Airplane)		
Fresh water	37,118	
Tongue Point (Airplane)		

Total Marked	238,974	165,828
Fresh water	28,686	41,987
Clarkston, WA (Truck)		
Fresh water	38,796	

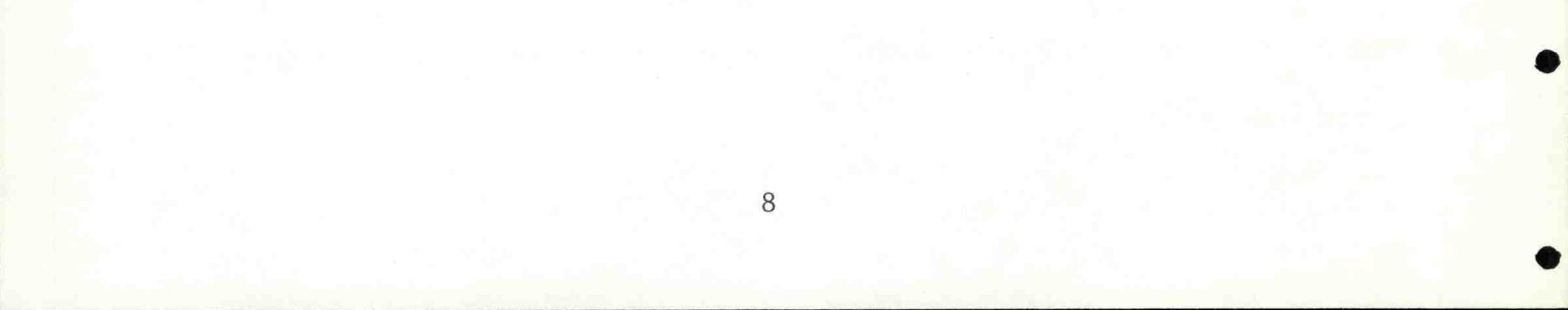
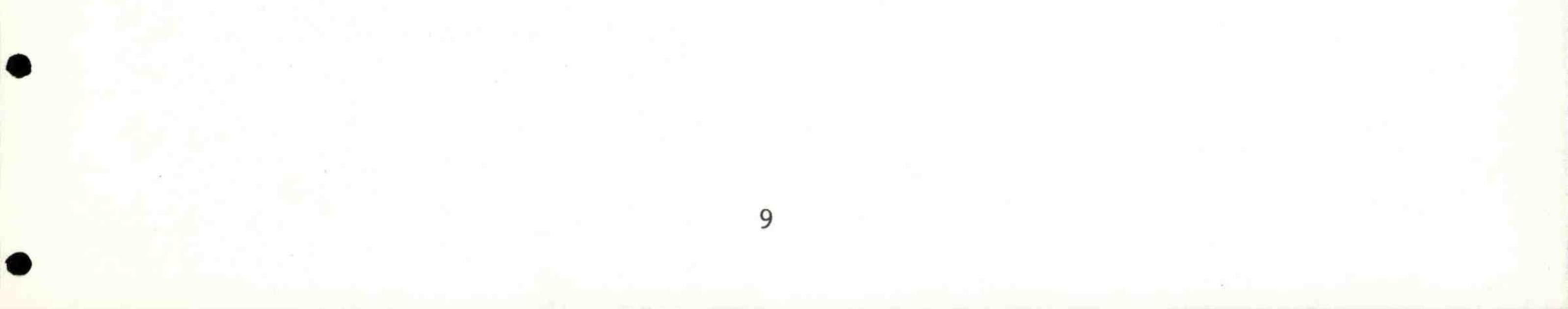


Table 3.--Summary of salmonid fingerlings collected at Lower Granite Dam and transported unmarked to release sites below Bonneville Dam, 1976.

.

•


•

conditions	No.	No.
Release site and transport	Chinook	Steelhead

Bonneville - Boat Ramp (Truck)		
Salt water	54,328	29,211
Fresh water	45,335	10,473
Bonneville - Powerhouse (Truck)		
Salt water	12,452	34,235
Fresh water	28,522	27,956
Total hauled unmarked	140,637	101,875

and the second

Delayed mortality of marked and unmarked chinook salmon was reduced significantly when 5 ppt salt water was used during transport (Table 4). It is apparent that hauling fingerling chinook salmon in 5 ppt salt water is beneficial for short-term survival. Further experiments are planned to evaluate the effect of salt on long-term

Disease Monitoring

During the smolt outmigration, research was conducted at Lower Granite Dam to determine if fish disease was of sufficient magnitude to influence survival of transported chinook salmon smolts in 1976. Even a small percentage of diseased fish could adversely affect others when all are closely confined in a tanker for 6 to 8 hours. Thirty freshly dead or moribund smolts were examined for fish diseases. The procedure consisted of microscopically examining wet

mounts of material from the fish's external surface, gills, internal organs and intestinal contents. In addition, kidney stabs were streaked onto TSA and cytophaga agar. Gram stains from the kidney and other suspect organs were prepared and examined under oil immersion. The external examination and agar slants were negative for all fish. However, the Gram stains revealed the presence of a Gram-positive diplobacillus in various internal organs of 9 of the 30 fish examined. This bacteria was determined to be the causative agent of bacterial kidney disease and most likely was a factor in the deaths of these fish.

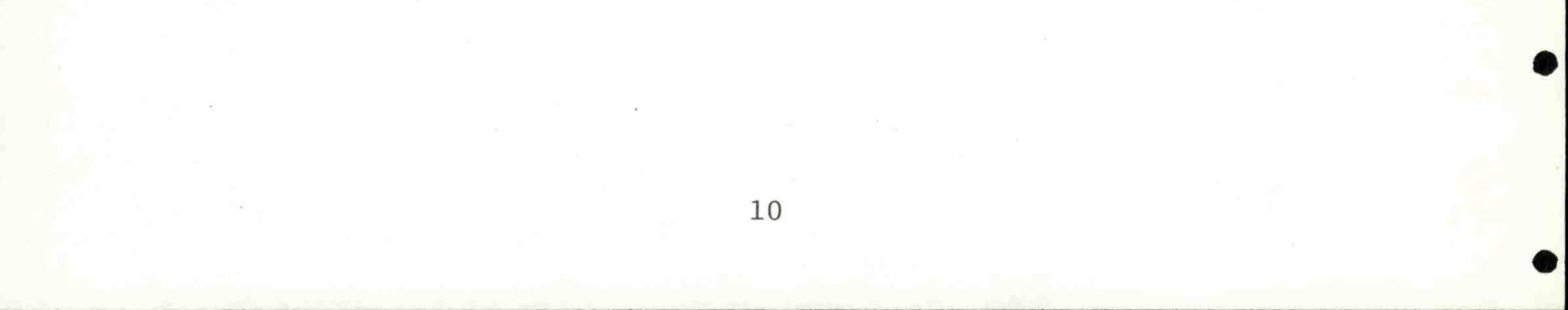


Table 4.--Delayed mortality of marked and unmarked chinook salmon and steelhead trout held 48 hours after transport from Lower Granite Dam in fresh water or salt water (5 ppt).

•

•

Mortality range (average)

	Salt water	Fresh water
Marked chinook	0 to 10.4 (1.5)	0 to 31.6 (4.7)
Unmarked chinook	0 to 5.8 (2.8)	0 to 12.5 (4.1)
Marked steelhead	0 to 1.8 (0.12)	0
Unmarked steelhead	0	0

In a separate study, a total of 90 chinook salmon smolts were randomly obtained from the fish population in an attempt to determine. what percentage of the live fish population was infected with fish The examination procedure was the same as previously diseases. described. Again, all external observations and agar slants were negative. Bacterial kidney disease was found in only 1 of the 90 fish

examined. Several fish were harboring various nematodes and trematodes in their intestinal tracts (including pyloric caeca), but the infestations were light and considered of no consequence.

A third study was conducted to determine if any freshwater fish diseases were contributing to delayed mortality after the fish reached salt water. In this experiment, 3 different groups of 400 chinook salmon fingerlings each were transported to the NMFS Mariculture Station at Manchester, Washington, where they were transferred directly to seawater and held in net pens for 3 months. In all three groups a mortality of

approximately 20% was experienced within the first 24-hour period. This mortality was attributed to osmoregulatory problems due to the immediate transition from fresh water to full strength seawater. For the duration of the study, all three lots of fish were observed daily and dead fish were preserved for later examination. When the experiment was terminated after approximately 3 months, a 50% mortality had occurred in each of the three groups. Subsequent examination of the survivors and the preserved dead for the presence of freshwater

disease was negative. Some of the dead examined on site showed

infections with Vibrio anguillarum, a saltwater bacterial disease, while

12

others simply showed symptoms of dehydration.

The combined results of the disease studies indicate that contagious diseases were not a serious factor influencing survival among transported chinook salmon in 1976. It is noteworthy, however, that the causative agent of kidney disease was found in about 30% of the dead fish examined.

FINGERLING TRANSPORTATION EXPERIMENTS - AIR

.

0

.

.

.

.

•

.

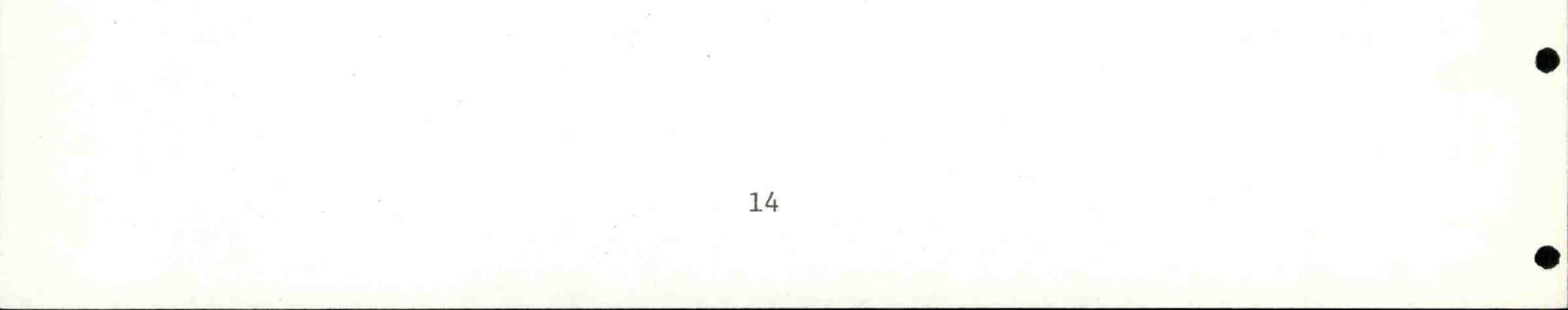
Experiments were initiated this year to determine if increased benefits could be obtained by transporting fingerlings by airplane. Even though transportation of fingerlings by truck around dams is clearly emerging as a positive means of increasing survival of chinook salmon and steelhead trout from the Snake River there is room for improvement. Air lifting will reduce transport time from Lower Granite Dam to Bonneville Dam by 6 hours (road time of 7.5 hours vs air time of 1.5 hours). With this reduction in transportation time, we hope for a proportionate reduction in stress and a corresponding increase

in survival. Furthermore, truck access for release sites on the lower Columbia River is limited; with air transport, release sites are virtually unlimited. This experiment had the following objectives: (1) compare survival of fingerlings transported by air with those hauled by truck, and (2) determine if survival can be further enhanced by transporting fish the additional 127 miles from Bonneville Dam to the estuary.

Fish to be transported by air were handled and marked in the same

manner as those hauled by truck. Separate brands and wire codes

identified each release group. (See Appendix Table 4 for details.)


After marking, the fish were placed in a tank truck and taken to the air strip at Lower Granite Dam for transfer by hose to a Super PBY airplane. The plane has a built in, 1600-gallon water tank originally designed for carrying fire retardant. The tank was altered to our specifications by insulating with polyurethane foam. The insulation controlled temperature variation and minimized vibrations due to

engine noises. The tank was also fitted with fish life-support systems consisting of aeration pumps and metered, high-pressure oxygen. Because these were initial tests with several unknowns, the aircraft was loaded with only 1000 gallons of fresh water. Chinook salmon smolts were chosen for initial air transportation studies. Previous studies showed that chinook are more vulnerable to the stresses and shock of transport than are steelhead trout and should, therefore, benefit most from the reduced transportation time. Moreover, chinook salmon smolts are only one-fourth as large as steelhead trout

smolts; thus, many more fish could be hauled per gallon of water.

Air transport of fingerling chinook salmon started from Lower

Granite Dam on April 21. Eight flights were made during the 17-day period ending on May 7. In four flights, a total of 37,118 fingerlings were air lifted to a release point about 5 miles below Bonneville Dam. An additional four flights air lifted 38,796 fingerlings to Tongue Point, about 4 miles upstream from Astoria, Oregon. The average "payload" for each flight was almost 9,500 fish.

The transported fish appeared to arrive at the release site in good condition. Water temperatures and dissolved oxygen levels (monitored by remote readout equipment) were maintained at desirable levels during each flight. The behavior of the fish was monitored by watching through

portholes in each compartment, and no abnormal behavior was observed.

In addition, careful observations were made in the drop area, and no dead fish were seen.

Economic feasibility of an air transport system cannot be fully evaluated until adult returns are analyzed. The capacity of present truck units is about 50,000 chinook salmon fingerlings per haul. Although not fully tested, it is expected that an airplane could haul about 20,000 fingerlingsper flight. It presently costs more to haul the 20,000 fish by air than to haul the 50,000 fish by truck--therefore,

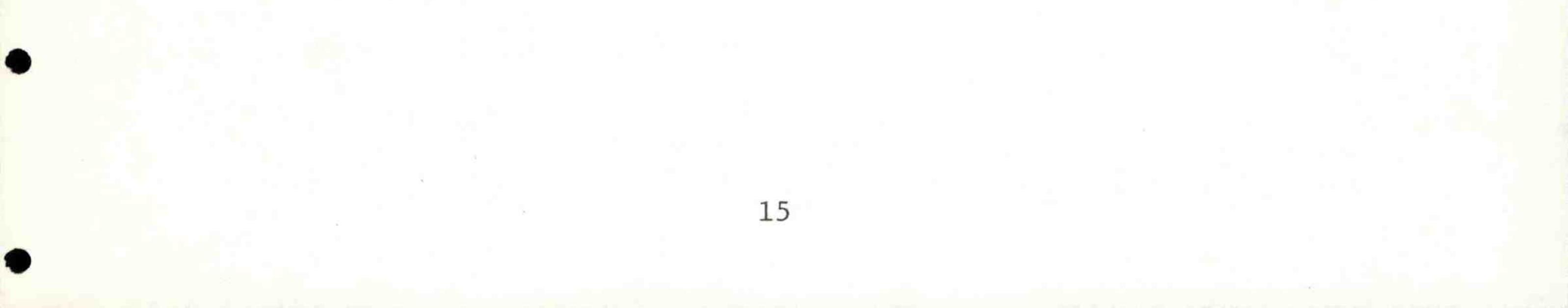
air-transported fingerlings must survive at a greater rate than truck-

hauled fingerlings to make the air system pay.

•

.

.


.

•

•

•

Present plans call for repeating the experiment in 1977. Over the 2-year period there will be enough releases of marked fish to provide a sound basis for evaluating the air transport system. Jack returns from the air lift releases will appear in 1977. More meaningful returns of adults during 1978-80 should indicate the true value of the airlift as a viable solution to the survival problems of chinook salmon in the Snake River.

TRAVELING SCREEN AND ORIFICE BYPASS STUDIES

Research on traveling screens and orifice bypasses for 1976 had the following objectives: (1) test the prolonged operation of

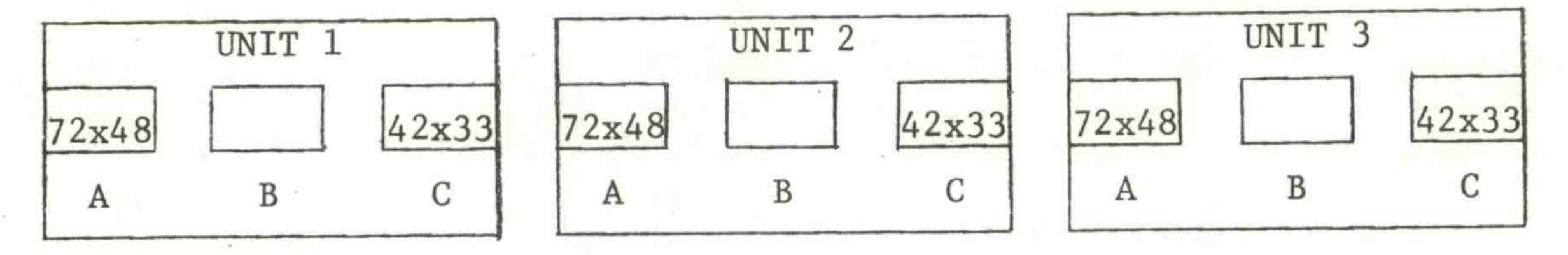
standard traveling screens in the A and C bulkhead slots of units 1, 2,

and 3 to provide diversion of fingerlings for collection and transportation;

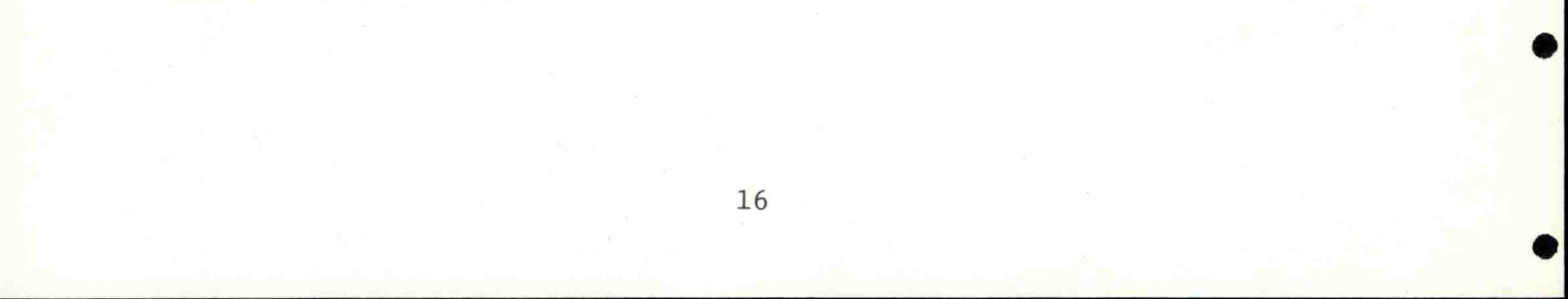
(2) monitor the condition of fingerlings after they enter the bulkhead

slots; (3) test and evaluate the new experimental traveling screen; and (4) determine orifice size and location for best passage of fingerlings from gate slots.

Standard Traveling Screen


Spring Tests and Results

The six standard traveling screens operated satisfactorily with a minimum of mechanical problems. Two mesh and perforated plate combinations were used in the bulkhead slots: (1) intermediate mesh (72 x 36 x 16 mesh


per foot) with 48% perforated plate (abbreviated 72 x 48), and (2)

regular mesh (42 x 36 x 16 mesh per foot) over 33% perforated plate

(42 x 33). Screens were placed in intakes in the following pattern:

We attempted to place the available screen and plate combination which was most effective in reducing descaling (72 x 48) in the highest flow areas (A slots). Since the 42 x 33 combination was the least

effective at reducing descaling, we placed it in the lowest flow area (C slots). We also believed a limited degree of guiding might be accomplished by leaving the B slots vacant thus "channeling" some fingerlings to that slot if they refused to enter adjacent A or C slots.

•

•

.

.

.

•

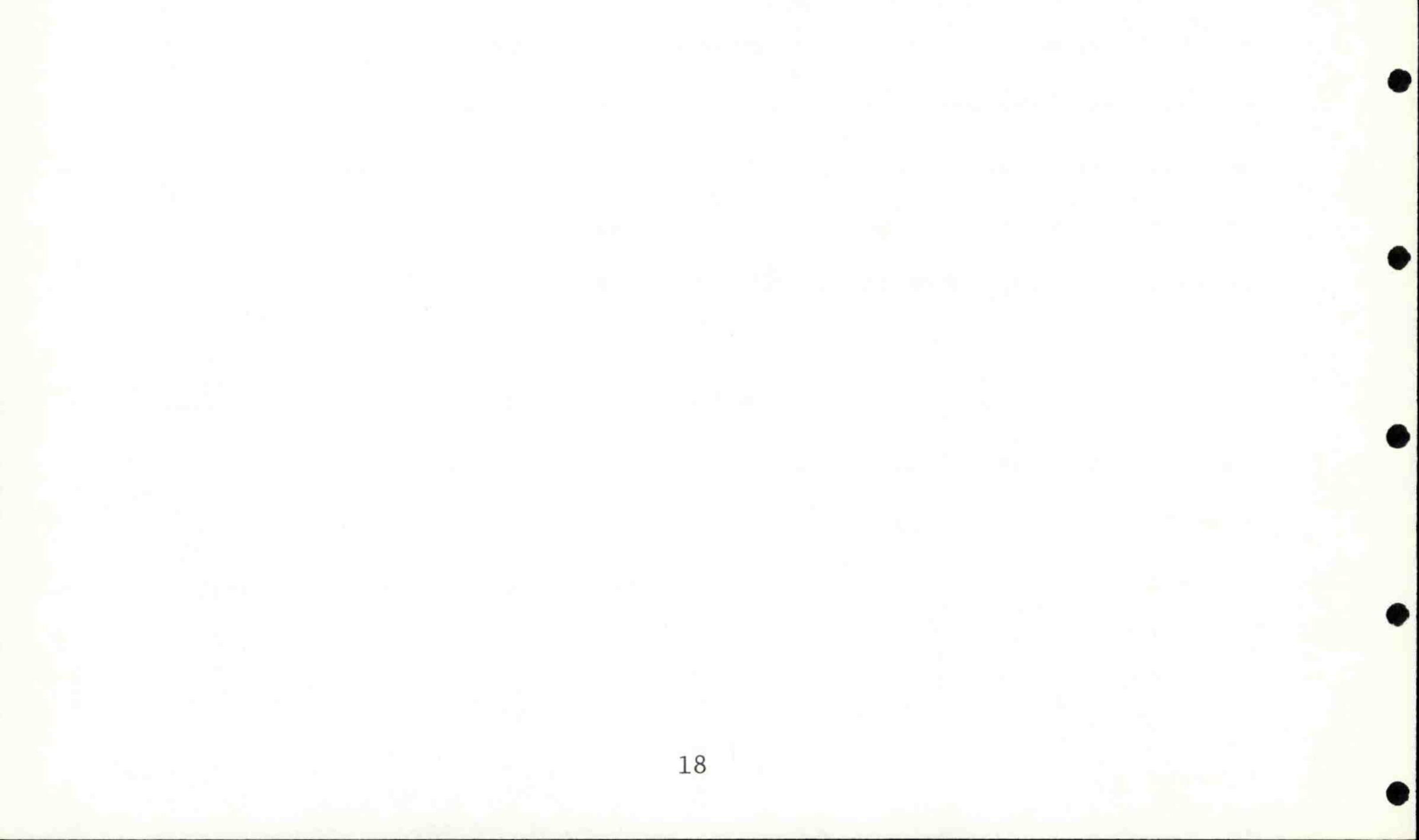
Descaling and injury of fingerlings in gatewells where traveling

screens were operating was monitored daily throughout the season.

Fish with more than 10% of their scales missing were classified as

descaled. A descaling rate was calculated by dividing the number of fish classified as descaled by the total number of fish counted in any particular test. Average descaling rate for chinook salmon was 3.5% in the A slots and 3.8% in the C slots (Table 5). The total average descaling for chinook salmon was about 3.6%--down from the 6.4% we reported in 1975. For the first time, descaling among

steelhead trout was higher than among chinook salmon although the overall percent descaling was considerably lower for both species than in past Apparently the placement pattern for traveling screens that seasons. we selected was useful in controlling descaling of chinook salmon because descaling rates in all slots were uniformly low and within acceptable limits. In June a special test was designed to measure the average descaling rate for fall chinook salmon in the gatewell when a conventional


traveling screen equipped with the 42 x 33 mesh-plate combination was

operating in the bulkhead slot. Tests were conducted with fall chinook

Table 5.--Average descaling rate measured for naturally migrating chinook salmon and steelhead trout collected in gatewells at Lower Granite Dam after diversion by standard traveling screens - 1976.

Screens Placed in Bulkhead Slots

Species	Location/descaling rate %	Location/descaling rate %	Location/descaling rate %	Average %
Chinook	1A - 3.87	2A - 3.70	3A - 2.98	3.51
Chinook	1C - 4.52	2C - 3.89	3C - 2.84	3.75
Steelhead	1A - 5.24	2A - 6.83	3A - 5.91	5.99
Steelhead	1C - 5.63	2C - 6.03	3C - 4.68	5.44

salmon obtained from the Priest Rapids spawning channel. Although tests were limited to hatchery fish ranging in length from 50 to 80 mm, the descaling rate was nil with the turbine operating at full load (155 megawatts).

Fall Tests and Results

•

.

•

.

During the fall testing period, four combinations of screen mesh and plate (72-33, 72-48, 42-33, and 42-48) were tested on a standard traveling screen operating in the bulkhead slot. Turbine loading (155 megawatts) and lighting (lights off) were kept constant throughout the tests. Insufficient time and numbers of experimental fish limited the number of tests we could conduct and the data we could obtain (Table 6). The combination of intermediate mesh (72) and 33% plate gave the best guidance (78%) and descaling was nil. The poorest guidance (55%) and

some descaling occurred with the combination of regular mesh (42) and

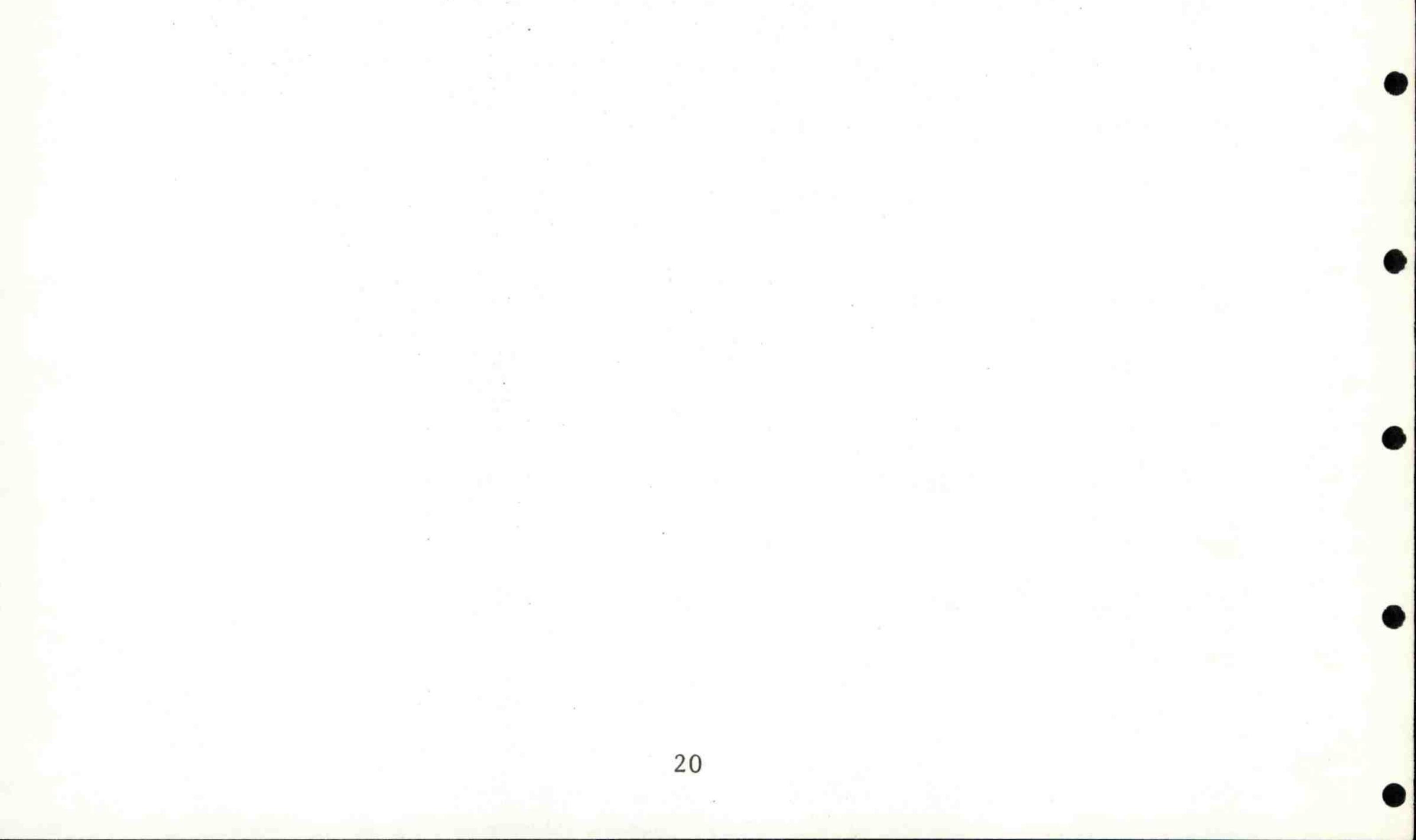
48% plate. Further tests were planned for the spring of 1977.

Adjustable Angle Traveling Screen

Spring Tests and Results

A new screen designed to operate with monofilament nylon mesh belts and at adjustable angles from 45 to 65[°] by 5[°] increments (Figure 1) was completed and delivered in time to be tested in the spring of 1976. Limited testing took place with the screen placed

19


at various angles and operating in either the fish screen slot

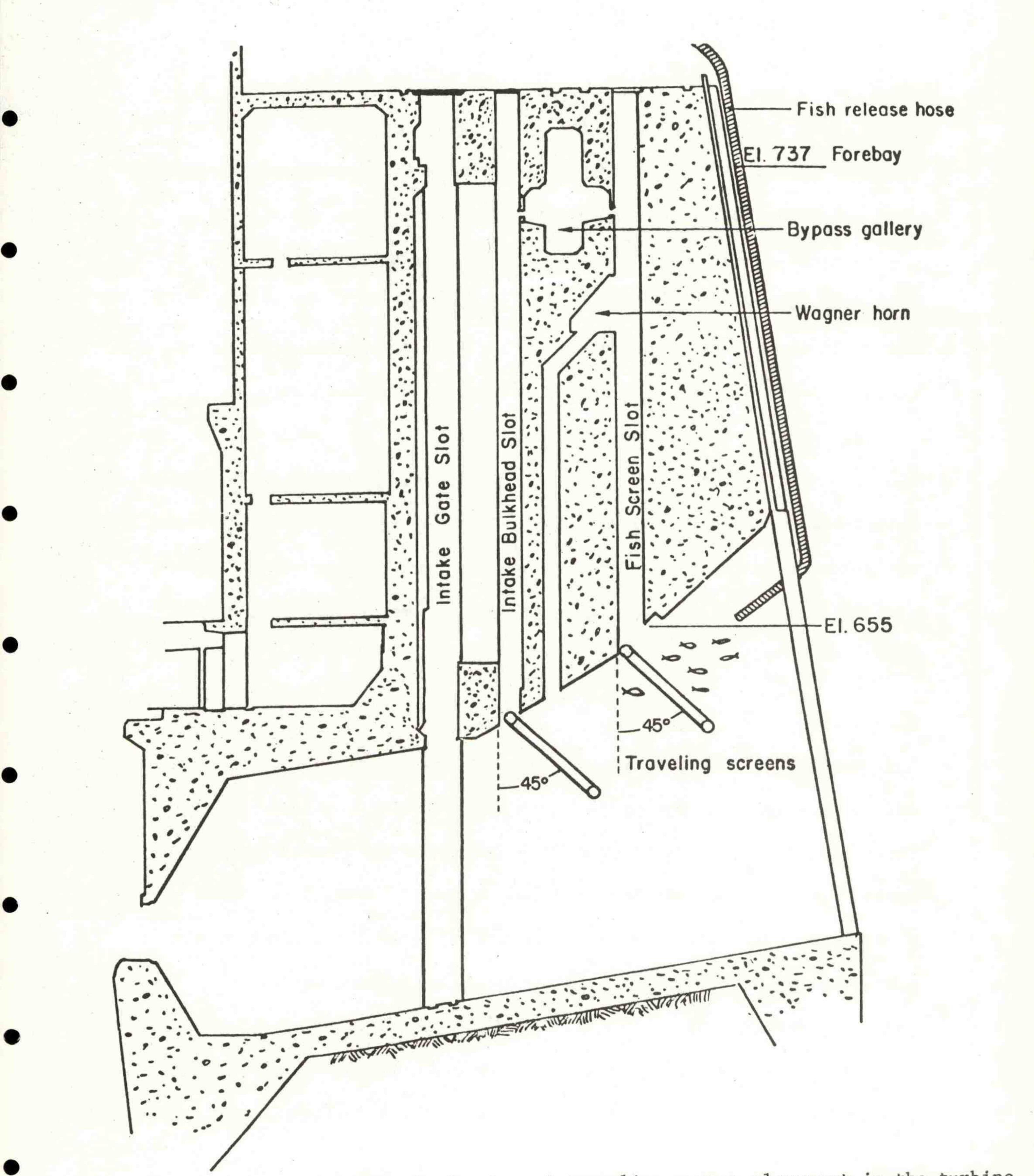

or the bulkhead slot. However, problems with the hydraulic

Table 6.--Results of tests using standard traveling screens with various combinations of mesh and perforated plate.

Order	Average	Screen	Turbine			Average
of	recovery	mesh and	load	Light	14	descaling
results	(%)	plate	(megawatts)	condition	Slot	(%)

4	55.1	42-48		**	**	2.4
3	69.8	42-33	11		**	0
2	74.2	72-48			**	0.3
1	78.2	72-33	155	OFF	BHS	0

0

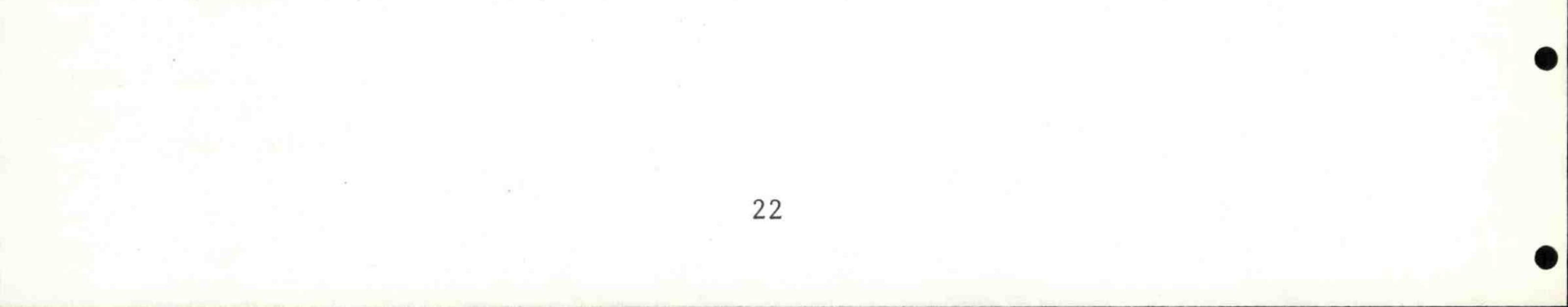
Figure 1.--Schematic drawing of traveling screen placement in the turbine intake at Lower Granite Dam. Traveling screens were tested in either the intake bulkhead slot or the fish screen slot at various angles from vertical (a screen angle of 45° is illustrated).

drive system prevented completion of any phase of the scheduled test
program. Despite the problems, some valuable information was obtained:
 1. With the new screen operating in the fish screen slot at
 angles greater than 45^o, descaling was significantly reduced
below the 20% or greater descaling rate measured with the standard
screen in the fish screen slot in 1975. In three of the four angles

tested (50°, 55°, and 65°) the descaling rate was less than 2%.

2. While insufficient data were obtained to determine the optimum conditions for maximum guiding with minimum descaling, we did determine that the average descaling rate for chinook salmon and steelhead trout was lowest when the new screen was operated in the fish screen slot.

3. Mechanical problems must be resolved before significant


tests can be accomplished.

Fall Tests

Mechanical problems that were prevalent throughout the spring test

period were resolved during the summer by Corps of Engineers personnel. Therefore, a full-scale program to evaluate the new screen was undertaken during October and November (See Appendix Tables 5 and 6 for experimental design). The objective was to determine optimum screen placement and configuration to minimize descaling and maximize guidance of fingerlings.

Test fish recovered from groups released in the turbine intakes provided data on descaling and guiding during the following test conditions:

1. New screen backed with 48% open area perforated plate--variables tested included screen angle, turbine load, screen lighting (on or off), and area of operation (bulkhead or fish screen slot).

2. New screen, modified with 33% open area perforated plate-turbine load (155 megawatts), light condition (On), and area of operation (BHS) were held constant, but the screen angle was varied

from 45 to 65° in 5° increments.

0

0

•

•

•

•

0

.

.

Procedures.--Test fish were hatchery-reared pre-smolt spring chinook salmon tattooed in lots of 150 fisheach. Each release (replicate) was made up of one lot; three replicates totaling 450 fish made up a test group.

Each lot of fish was introduced into the turbine intake through a 3-inch hose placed behind the trash rack and held in place (by cable) about 15 feet upstream from the traveling screen and 4 to 6 feet from the intake ceiling (Figure 1). Video observations were made by placing

the camera and its light source on the truss near the top center of the (In previous tests the camera was mounted near the center of screen. the screen; however, clearance was reduced in the new design so that this was not practical.) Direct observations were made via a remote monitor, and observations were also taped for later analysis. Video observations were made only on selected tests when screen lights were on so the TV light source would have minimal influence on fish behavior. Lighting for the new adjustable angle screen was provided by an

array of twelve 500 watt incandescent bulbs attached to a framework welded

to the back side of the screen. Lights were spaced so that the entire

23

screen was illuminated. No illumination was provided at the slot entrance.

During tests, the orifices in the test slot were closed to prevent egress of fish. Tests were evaluated by dipnetting the slot after each test group (3 lots) was released. The number recovered compared to number released provided the guiding efficiency. All fish recovered were examined for descaling and the standard descaling rate was determined.

Results--adjustable angle screen modified with 48% plate. -- From

the outset of the tests it was apparent that the test fish were good quality, healthy animals. Consequently, recoveries were high and fish responded to various conditions presented to them. A composite of 30 test results ranked by average percent recovery is given in Table 7. Pertinent findings include the following: 1. Best guidance and least descaling occurred with a lighted screen in the bulkhead slot at screen angles of 50 to 65° (rankings 1 to 8). Recovery rate averaged 85% and descaling rate was nil. 2. In the bulkhead slot, guidance was independent of turbine load but depended on lighting condition and screen angle. With screen lights off, guidance declined to 75% and descaling increased slightly (rankings 9, 10, 12 to 14, 17 to 20, 23, and 25). There were no significant differences among screen angles from 50 to 65°, but guidance at 45° (the traditional angle of operation for standard screens) was significantly less effective--68% vs 85% (rankings 11, 20, 23, and 25). 3. Poorest guidance occurred when the screen was in the fish

screen slot. With lights off, average recovery rate was 64% (rankings

24

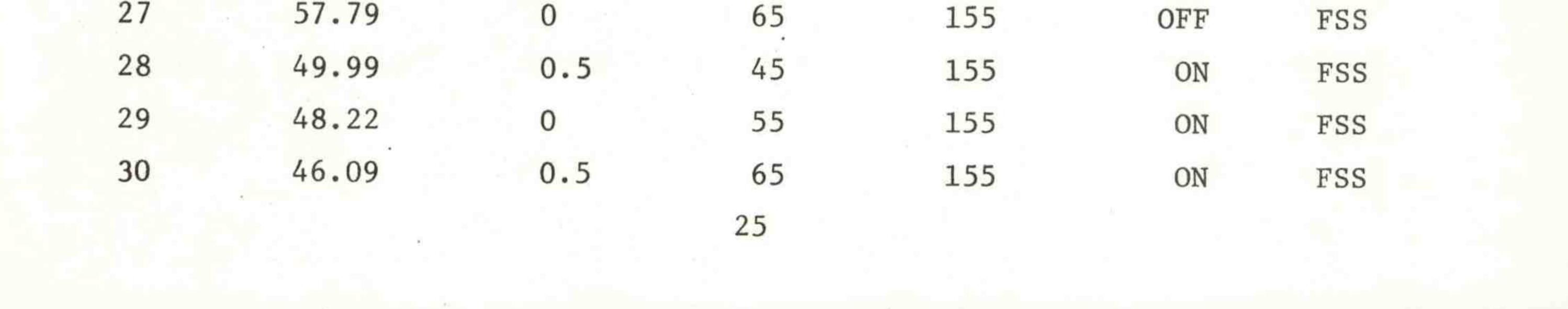
16, 21, 22, 24, 26, and 27). When screen lights were on, guidance

declined significantly to 48% (rankings 28, 29, and 30).

Table 7.--Results of tests using a modified adjustable angle traveling screen with a 48% perforated plate at a wide range of operating conditions.

•

•


•

•

•

Order Average Average Screen Turbine of descaling angle recovery Light load results (%) (megawatts) (degree) (%) condition Slot 87.55 1 0 50 155 BHS ON 2 87.35 0 65 155 ON BHS 86.51 3 0 60 155 ON RUC

	3	86.51	0	60	155	ON	BHS
	4	85.33	Ò	55	125	ON	BHS
	5	84.67	0	60	125	ON	BHS
	6	84.22	0	50	125	ON	BHS
	7	83.56	0	65	125	ON	BHS
	8	78.89	0.6	55	155	ON	BHS
	9	78.67	0	60	125	OFF	BHS
	10	77.78	0	60	155	OFF	BHS
	11	77.68	0	45	125	ON	BHS
	12	76.89	0	50	125	OFF	BHS
	13	75.78	0.3	50	155	OFF	BHS
6 5	14	74.80	0.7	6,5	125	OFF	BHS
	15	73.77	0	65	125	OFF	FSS
	16	73.5,5	1.2	45	125	OFF	FSS
	17	73.3	1.2	65	155	OFF	BHS
	18	71.3	0.43	55	125	OFF	BHS
	19	70.17	1.9	55	155	OFF	BHS
	20	69.33	1.8	45	155	ON	BHS
	21	66.65	0.3	60	155	OFF	FSS
	22	66.4	1.6	55	125	OFF	FSS
	23	64.66	1.3	45	125	OFF	BHS
	24	59.97	0	45	155	OFF	FSS
	25	59.5	4.3	45	155	OFF	BHS
	26	59.1	0	55	155	OFF	FSS
	27	57 70	0	65	155	OTT	700

4. Video observations indicated that fish were capable of swimming in all directions near the screen; suggesting that the prolonged activity in the vicinity of the screen could ultimately lead to fish being descaled or perhaps swimming back to the forebay.

5. Turbine load did not have a significant effect on either

guiding or descaling with screens in the bulkhead slot. For example,

when operating in the bulkhead slot with screen lights on, the average

recovery was 82% and 83% at 155 and 125 megawatts, respectively.

Descaling was negligible at both loads. The effect of turbine load

on guidance in the fish screen slot was not clear.

Results--adjustable angle screen modified with 33% plate.--Results from the five conditions tested are summarized in Table 8. Guidance was good (average 82%) at all angles tested, and no significant difference could be measured when the results were compared to results obtained

while using the 48% plate under similar conditions.

Orifice Bypass

At Lower Granite Dam the bypass normally functions with two 8-inch lighted orifices open from each gatewell slot. The orifices are located near each corner of the upstream side of the bulkhead slot and near each corner of the downstream side of the fish screen slot. Observations in 1975-76 indicated that egress from the gatewell slots was excellent and no accumulation of fingerlings occurred. In 1976, in a series of replicated experiments, we tested orifice

passage efficiency for lighted vs unlighted 8-inch orifices and lighted

Table 8.--Results of tests using a modified adjustable angle traveling screen with a 33% perforated plate at selected operating conditions.

•

•

•

Order of	Average recovery	Average descaling rate	Screen angle	Turbine load	Light	
results	(%)	(%)	(degree)	(megawatts)	condition	Slot

1	86.1	0.3	55	155	ON	BHS
2	84.0	0.3	50	**	**	**
3	82.9	0	60	"	**	11
4	79.9	0.3	45		**	**
5	78.9	0	65	**	*1	"

vs unlighted 6-inch orifices in the bulkhead slot of unit 2A. Inserts were used to reduce the diameter of existing orifices to 6 inches, and a special trap was designed to capture fish for enumeration. Operations were conducted at night when most fingerlings move out of the gatewells. The objective was to determine which conditions should be used for

future operations at Lower Granite Dam. In addition, the information obtained may be applicable to future design criteria for orifices at other dams.

Our tests indicated that 8-inch diameter orifices were more efficient at passing fish than were 6-inch diameter orifices. We also found that lighted orifices were more efficient than unlighted orifices. We concluded that for future work at Lower Granite Dam, two lighted 8-inch diameter orifices should be used for maximum passage.

Traveling Screens

 Further tests should be scheduled to determine the optimum screen angle and perforated plate backing for adjustable angle screens operating in both the bulkhead slot and the fish screen slot.

2. Adjustable angle screens (3) and standard screens (1) should be fitted with lights, and tests should be scheduled to determine if they enhance guiding of naturally migrating juvenile chinook salmon and steelhead trout.

3. We should continue to monitor the descaling rate for all

28

juvenile salmonids associated with traveling screens at the dam.

Orifice Bypass

.

•

•

0

1. For maximum fish passage efficiency, orifices, regardless of their size, should be lighted.

2. Additional research is needed to optimize orifice configuration under a variety of conditions.

RESEARCH - LITTLE GOOSE DAM

MASS TRANSPORTATION EXPERIMENTS

Mass hauling of juvenile salmonids was begun in 1975 but only as an emergency measure. Transported fish were not marked, thus preventing any assessment of their contribution to the ensuing adult runs. Further research was scheduled for the 1976 outmigration period. The objective of the transport research at Little Goose Dam in 1976 was to initiate a mark and release study to evaluate the potential of mass hauling juvenile chinook salmon and steelhead trout to increase their survival.

Experimental Design and Procedures

In 1976, mass transportation research began at Little Goose Dam on April 16. Transportation of fingerlings throughout the migration period was limited because only units 2 and 3 had vertical and traveling screens in place for diverting fish into the bypass collection system. Both juvenile chinook salmon and steelhead trout were marked and released in three lots: one lot (a control) was transported to and released at Central Ferry above Little Goose Dam, and the other two

lots (test) were transported to and released at the sites below Bonneville

Dam--one lot hauled in fresh water and one lot hauled in 10 ppt salt water. Fish that were not a specific part of the mass transport evaluation were

transported and released unmarked. Different wire codes and brands

identified time and location of release.

Handling, marking, and transport operations were similar to those

used at Lower Granite Dam; however, loading operations were significantly different. Fingerlings were transferred either from the raceways into a transport truck or into the marking building via a fish loading hopper. The hopper held 175 gallons of water and fish (about 2000 fish), and was lifted from the raceway and emptied in about 30 seconds. This transfer method appeared to work better than the pumping system previously used; but a gravity flow system, such as employed at Lower Granite Dam, is definitely superior to either system used at Little

Goose Dam.

Rate of descaling, incidence of gas bubble disease, and the amount of delayed mortality were the criteria used to evaluate the quality of fingerlings hauled from Little Goose Dam.

Numbers and Condition of Smolts Transported

About 850,000 salmonids were counted at the fingerling facility at

Little Goose Dam in 1976: 561,907 chinook salmon, 280,686 steelhead

trout, 4,324 sockeye salmon and 168 coho salmon. Of these, 188,088

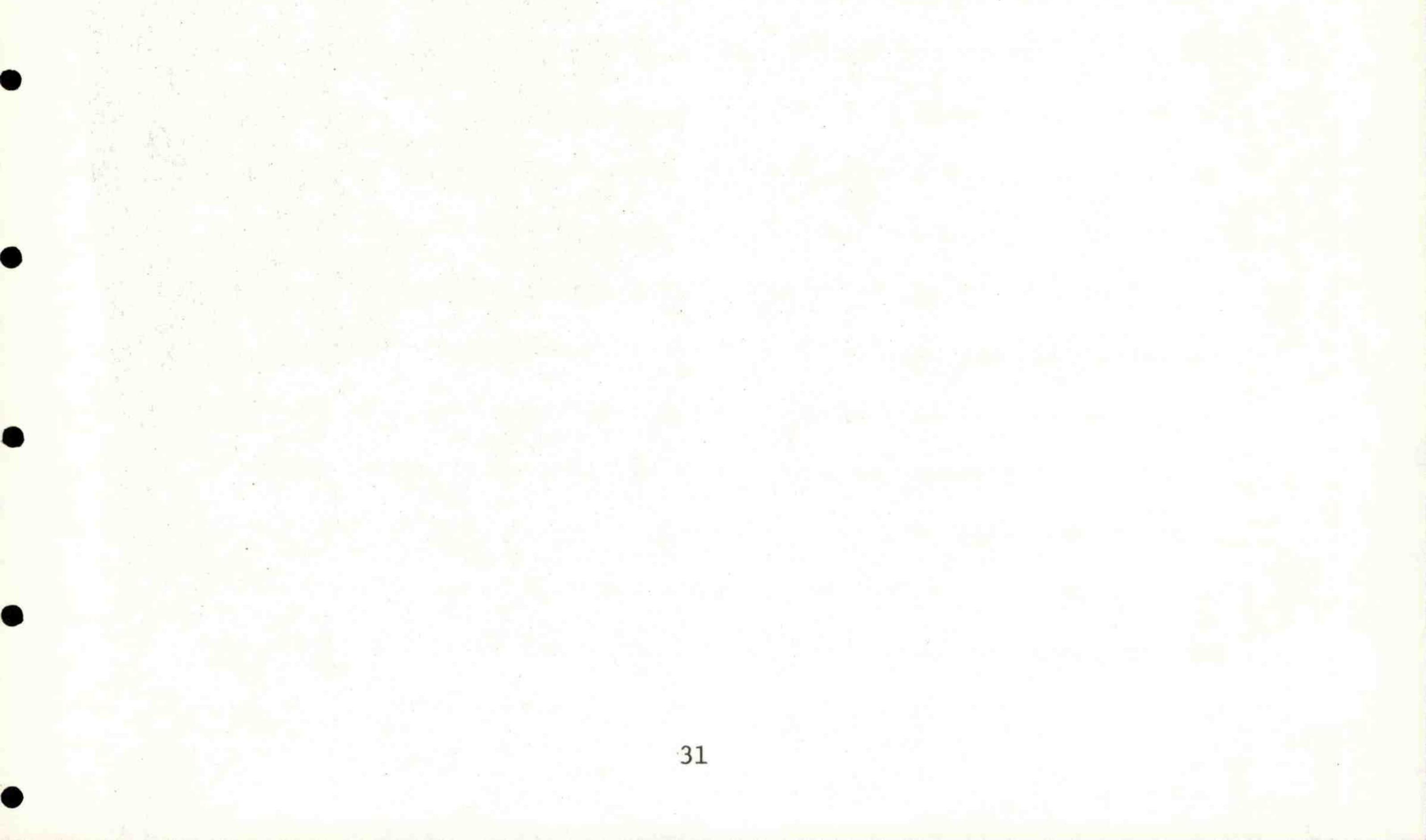
chinook salmon, 129,710 steelhead trout, 1,506 sockeye salmon and

168 coho salmon were marked for the mass transportation experiment

(See Appendix Tables 7 and 9 for more details of marking (Table 9).

Table 9.--Summary of fingerlings collected at Little Goose Dam, marked, and then transported to Bonneville Dam (test) or released at Central Ferry (control), 1976.

Release site


•

Transport medium

Chinook

Steelhead

Total Marked		188,088	129,710
Central Ferry (control)	Fresh water	42,928	33,406
Bonneville - Powerhouse	Fresh water	32,366	32,514
Bonneville - Powerhouse	Salt water	31,311	41,446
Bonneville - Boat Ramp	Fresh water	36,239	10,667
Bonneville - Boat Ramp	Salt water	45,244	11,677

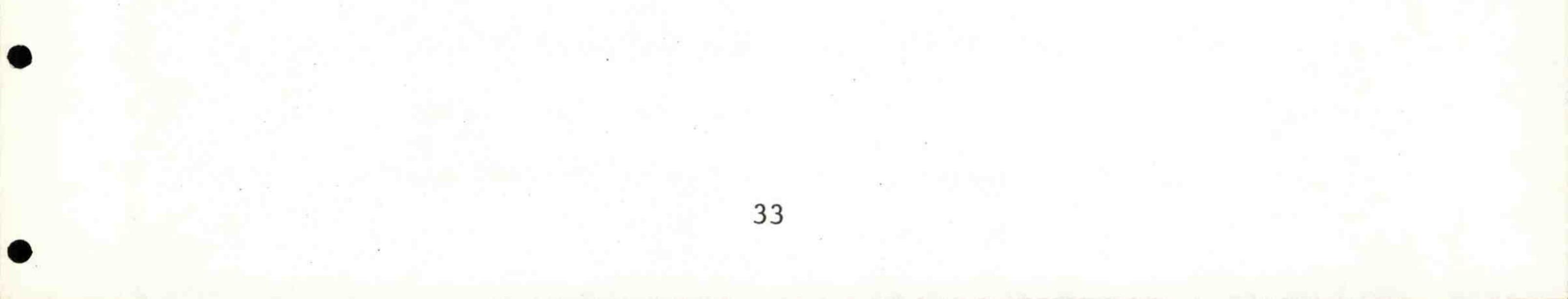
by test group.) The following numbers of fingerlings were transported unmarked: 255,295 chinook salmon, 112,872 steelhead trout, 2,818 sockeye salmon. Table 10 shows the release locations and transport conditions for the unmarked juveniles.

At Little Goose Dam, descaling, gas-bubble disease, and stresses

placed on juveniles because of the inefficient orifice bypass system continued to thwart collecting fish in good condition. As a result, delayed mortality was considerably higher among fingerlings hauled from Little Goose Dam than among those hauled from Lower Granite Dam. Average rate of descaling for chinook was 11.5% and ranged from 0.0 to 34.6%. Assuming descaling of 3.5% by screens, there was 8% descaling from the gatewell to the marking facility; this rate was more than double the 3.5% rate measured at Lower Granite Dam. Delay in exiting from the gatewell contributed substantially to the higher descaling rate as well as to the high incidence of gas bubble disease symptoms (average 51.7%, range 12 to 80.5%) for chinook salmon. On April 26, near the peak chinook migration, the dissolved N, level was 118% in the forebay at Little Goose Dam. Poor passage through gatewell orifices coupled with N, levels in excess of 115% apparently created a potential gas bubble disease problem for chinook salmon at Little Goose Dam. Mortality during transport to the Bonneville boat ramp showed a marked difference between saltwater and freshwater hauls. Average transport mortality for chinook salmon hauled in salt water was 0.04%

compared to 0,56% in freshwater hauls. Average transport mortality

for steelhead trout was 0.06% for saltwater and 0.47% for freshwater


32

This is lower than the mortality observed last year for hauls.

Table 10.--Summary of fingerlings collected at Little Goose Dam and transported unmarked below Bonneville Dam, 1976.

	Transport		
Release site	medium	Chinook	Steelhead

Total hauled unmarked		255,295	111,872
Bonneville - Powerhouse	Fresh water	76,293	58,731
Bonneville - Powerhouse	Salt water	61,478	34,037
Bonneville - Boat Ramp	Fresh water	57,658	13,641
Bonneville - Boat Ramp	Salt water	59,866	5,463

both chinook salmon (4.7%) and steelhead trout (1.1%), when all fingerlings were transported in fresh water.

Delayed mortality of fish was compared among the following: (1) marked and unmarked chinook salmon, (2) marked and unmarked steelhead trout, and (3) freshwater and saltwater loads. Samples of fish obtained from loads transported to Bonneville Dam were held for 45 hours

to determine delayed mortality.

Delayed mortality of <u>marked chinook salmon hauled in salt water</u> ranged from 0 to 14.7% with an overall average of 4.1%; while delayed losses of <u>marked chinook hauled in fresh water</u> ranged from 0 to 10.0%, with an overall average of 6.1%. Delayed losses of <u>unmarked</u> chinook salmon hauled in <u>salt water</u> ranged from 0 to 19.0%, with an overall average of 4.3%; while delayed losses from <u>unmarked</u> chinook salmon hauled in <u>fresh water</u> ranged from 0 to 17.8%, with an average of 3.2%. Delayed mortality of steelhead trout occurred in only one load

during the season. In that load (a saltwater haul) the delayed loss

of marked steelhead was 3.3% and the delayed loss of unmarked

steelhead was 6.0%. The overall average was 0.29% for marked steelhead and 0.13% for unmarked steelhead.

Among both species, losses from <u>unmarked</u> fish were the same or slightly less than losses from <u>marked</u> fish. These small differences are probably significant since unmarked fish were loaded from raceways without inspection and included substantial numbers of descaled fish; whereas, the marked groups were inspected individually and descaled

fish were not marked. The delayed mortality rates of 3 to 6% for chinook salmon and 0.1 to 0.3% for steelhead trout are much lower

than the delayed losses for chinook salmon (14.4%) and steelhead

trout (0.6%) mass-hauled last year. These data indicate that the changes in loading procedures from a fish pump to a fish loading hopper system were beneficial in reducing stresses. Even so, the rate is still more than double the delayed mortality measured on fish hauled from Lower Granite Dam.

0

•

•

•

•

Fingerlings hauled from Little Goose Dam will continue to be

of poorer quality than those hauled from Lower Granite Dam until the fingerling bypass is brought up to the quality of the bypass at Lower Granite Dam and a gravity flow system to load fish is provided. The Corps of Engineers is funding research in 1977 to examine methods of improving the bypass at Little Goose Dam. A modified bypass with a gravity fish loading system is scheduled to be in operation by the spring of 1978.

RETURN OF ADULTS FROM THE 1975 OUTMIGRATION

The adult collection facility at Lower Granite Dam was tested in the fall of 1975 and the spring of 1976. Although some fish were trapped, the system did not function as planned (a proposal for modification has been forwarded to the Corps). Therefore, adult chinook salmon and steelhead trout originally transported from Lower Granite Dam as juveniles and returning after one year at sea were collected and evaluated at the trapping facility at Little Goose Dam. Only a preliminary evaluation of the benefits of transporting juveniles from Lower Granite Dam is possible at this time. To date,

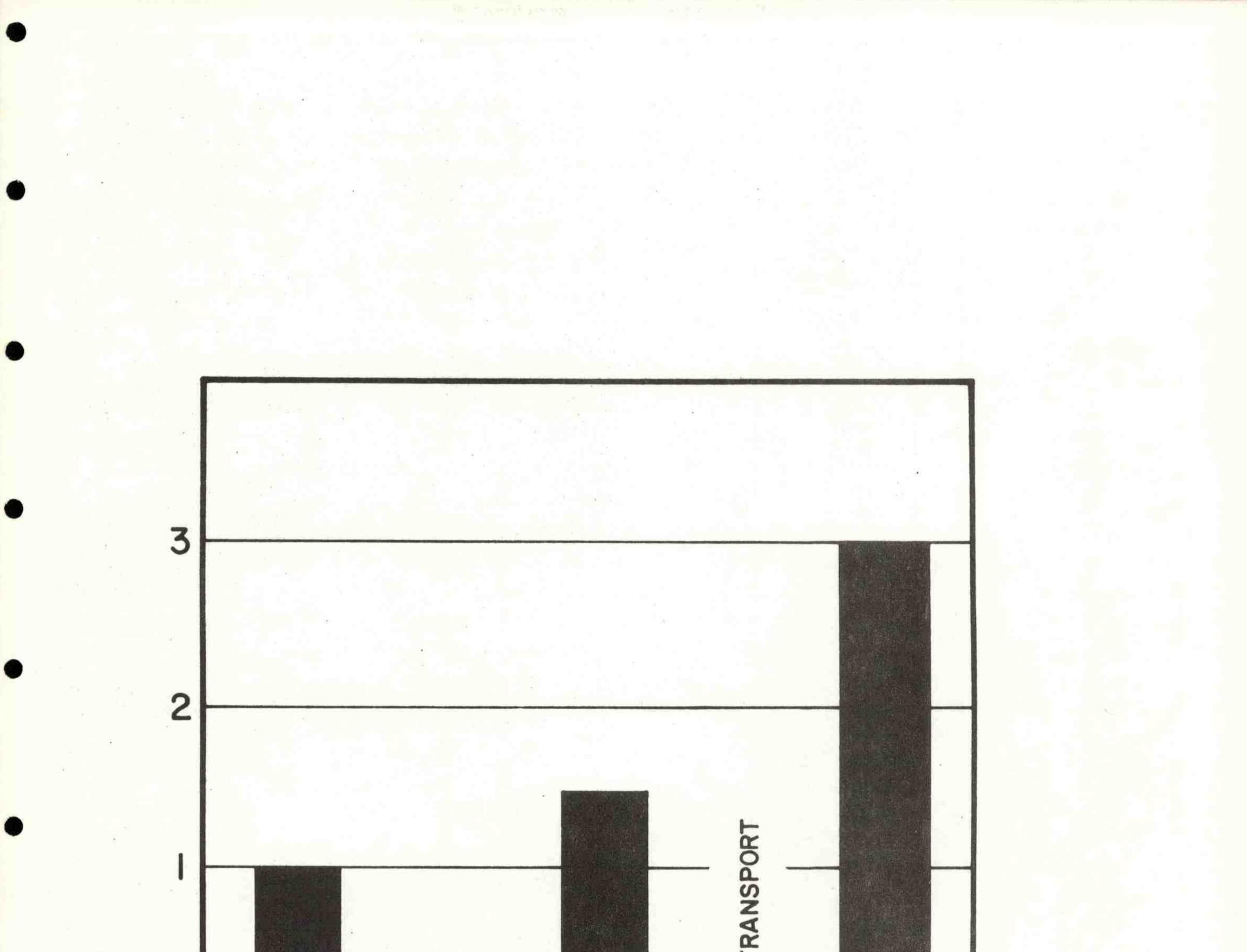
75 chinook salmon and 260 steelhead trout have returned. The transport

benefit ratio is 3.0 to 1 for chinook salmon and 2.5 to 1 for steelhead trout. It should be emphasized that returns are preliminary as only

one-ocean fish have returned.

Although the transport benefit ratio for jack chinook salmon isn't as great as was the benefit ratio based on jack returns from the

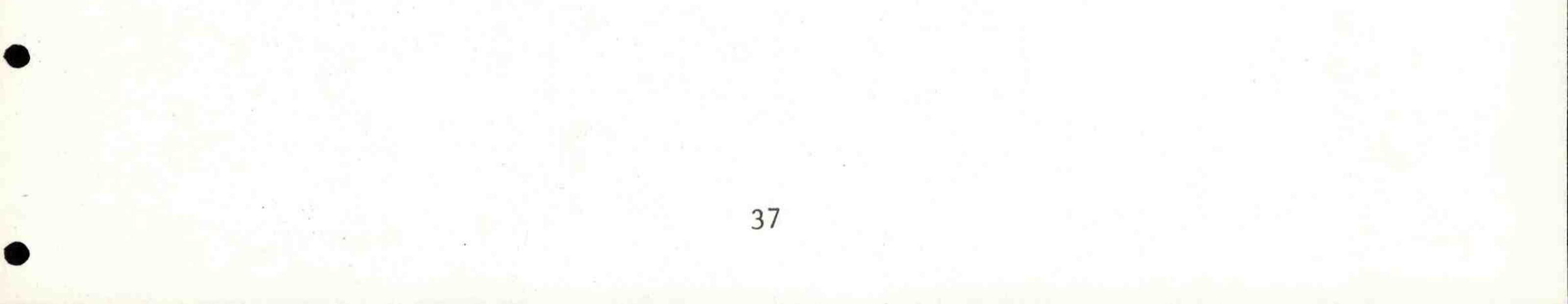
1973 release (ratio 16 to 1), the percentage of jack return from the


1975 transported groups is about double the return of the best previous

return (1973 release-Little Goose experiments). See Figure 2.

It appears that transportation of juveniles from Lower Granite Dam will be at least as effective as transportation from Little Goose Dam. In fact, because the fish are collected in better condition and new techniques such as air transportation (chinook salmon only) and hauling in salt water are available, survival will probably be increased.

RETURN OF ADULTS FROM THE 1973 OUTMIGRATION


Returns to the adult trap at Little Goose Dam from the 1973 control and transport releases of chinook smolts marked at Little Goose Dam are complete with the exception of a few 4-ocean age fall chinook salmon. The combined adult returns from the 1973 release indicate a much higher survival from transport releases than from control releases. Returns from the fish released at the Bonneville site indicated a transport to control benefit of 1187% (ratio 12.8 to 1); returns from the fish released at the Dalton Point site indicated a benefit of 1637% (ratio 17.4 to 1) (Table 11).

0 1971 1972 1973 1974 1975

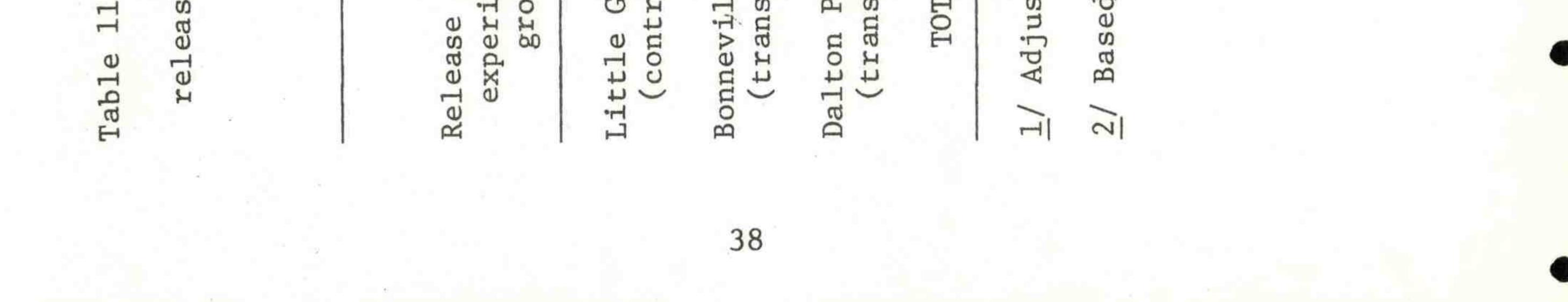
•

Figure 2.--Relative rate of return of 1-ocean chinook salmon transported as smolts from Little Goose Dam (1971-73), and from Lower Granite Dam (1975).

control and transport

rved eturn in veniles ber ased

Transport benefits (%)


24

60

17

1187

1Returns ses of smol	s to Little Go lts in 1973.	Recovery p	1, 2 and eriod Apr	3-ocean il 1974 to	chinook salr o August 19 ptured	mon from c 76.
imental oups	Number of juveniles/ released	1-ocean age	-ocea age	cean	22	adult re % of juv relea
Goose Dam rol)	88,170	ŝ	TT .	2	21	.02
lsport)	83,606	34	142	82	258	.30
Point sport)	57,758	35	130	76	241	. 4
TAL	229,534	72	283	165	520	
ori	nitial tag los	°SS				
bser	ved return			×		

Returns of chinook salmon to Little Goose Dam were also compared by seasonal migrations: spring, summer, and fall run chinook salmon. Returns from the Bonneville Dam release showed a transport benefit of 1800% for spring chinook salmon, 709% for summer chinook salmon, and 1000% for fall chinook salmon. Similarly, returns from the Dalton Point releases showed a transport benefit of 2327% for spring chinook salmon

and 1272% for summer chinook salmon. Due to the timing of the fall chinook salmon smolt migration past Little Goose Dam, it is doubtful that any were transported to the Dalton Point release site. Returns to Little Goose Dam of 1, 2, and 3-ocean age adult steelhead trout from control and transport releases of smolts in 1973 are complete, and a total of 1279 steelhead trout have been identified. Only 84 adults returned in 1976; therefore, the major analysis was presented in last year's report. Benefits from transportation continued to remain high for the returning 2-ocean age steelhead trout. Total returns from the

1973 releases showed a transportation benefit of 1231% (or about a

13.3 to 1 ratio) for the Bonneville releases and 1237% (or about 13.4

to 1 ratio) for the Dalton Point releases.

DISSOLVED GAS (N2) STUDIES - 1976

The program for bi-weekly monitoring of dissolved gas concentrations in the lower Snake and Columbia Rivers was similar to last years. In addition, intensive N2 sampling was carried out to evaluate the effectiveness of newly installed spill deflectors on the spillways of

39

Little Goose and McNary Dams.

•

.

•

•

0

•

•

.

MONITORING OF N₂ SUPERSATURATION Dissolved gases (N₂ and O₂) and water temperatures were measured every two weeks from April 12 to August 2. Water samples were collected

at reservoirs from Lower Granite Dam on the Snake River downstream to Bonneville Dam and at lower river sampling sites near Washougal, WA, and Prescott, OR, on the Columbia River. Collections were also made

immediately downstream from Ice Harbor, McNary and Bonneville Dams. Samples were collected by aircraft in a one-day period, and gas analysis was accomplished the following day. Total dissolved gas pressure measurements were also taken by saturometer at 3 or 4 of the sampling sites for comparison with gas chromatograph values. Water flows this spring were moderately high (up to 192 kcfs in the Snake River and 404 kcfs on the Columbia River), yet N₂ supersaturation was less than observed in previous years with similar river conditions (Appendix Table 10). N₂ concentrations in the Snake River seldom

reached 130% of saturation, and averaged only 123% during the freshet (April 26 - June 21); whereas, in comparable years before installation of spill deflectors, nitrogen concentrations were near 140% of saturation. Concentrations of dissolved gasses in the Columbia River were also less than in years past with gas concentrations throughout most of the lower river seldom going above 115% of saturation. Concentrations in the Bonneville Dam tailrace were slightly less than observed before spill deflectors were installed, but saturation percentages were still in the 130's during heavy spill conditions.

EFFECT OF SPILL DEFLECTORS AT LITTLE GOOSE DAM

•

•

.

•

.

•

.

.

N₂ measurements were made on March 22 below the spillway at Little Goose Dam during spill discharges of 30, 60, 85, and 120 kcfs. Six spill bays with deflectors were used at uniform gate openings for each discharge level. N2 saturation values obtained during these tests ranged from 110% to 133% of saturation depending on spill discharge (Appendix Table 11). Prior to installation of deflectors, with spill of 30 to 120 kcfs, N2 saturation values would have been 121% to >145% (data from 2/12 and 5/15/72) -- about 10 to 15% higher. N2 values from the forebay of Lower Monumental Dam were also compared. These values represent mixed spillway and powerhouse discharges from Little Goose Dam. At river flows of 123 to 169 kcfs (spill discharge approximately 57 to 100 kcfs) deflectors reduced N2 values about 10% (138% to 128%).

When saturation values obtained below spillway deflectors at

Lower Monumental and Lower Granite Dams were compared to values obtained below Little Goose Dam, we found that the values at Little Goose Dam were slightly higher (2 to 8%) throughout the range of flows tested. This difference is probably due to a deeper stilling basin below the spillway at Little Goose Dam and smaller spill deflectors (8 feet in length compared to 12 feet at Lower Monumental and Lower Granite Dams).

EFFECT OF SPILL DEFLECTORS AT MCNARY DAM

An extensive N2 analysis program was carried out at McNary Dam from

April thru July to define the effects of the block of spill deflectors installed on 18 of the 22 spill bays. The wide range of conditions

tested included the following: (1) single vs multiple bay spill discharges; (2) light, moderate, and heavy spill; (3) uniform vs non-uniform gate opening patterns; (4) low and high N2 concentrations in the forebay; and (5) cold and warm water temperatures.

The following discussion is based on averaged N2 values measured under specific conditions (Table 12). Individual datum points can be

observed in Appendix Table 12.

Comparison of N, measurements between deflector and standard single bay discharges showed a 10 to 16% benefit from the deflector, but as observed previously all values were lower than observed during multiple bay spill discharges with the same flow per bay (Table 12). N2 measurements from single bay discharges have provided a relative measure of the effects of deflectors for each dam tested except Bonneville Dam. However, efforts to extrapolate single bay measurements to accurately predict benefits from multiple bays with deflectors have not been

successful.

Supersaturation increased with volume of flow during all tests and the highest saturation value recorded (128%) was measured during the highest spillway flow tested (249 kcfs). In years prior to installation of deflectors, nitrogen concentrations in the tailrace were commonly 140% of saturation at discharges near 250 kcfs. Comparisons of bi-weekly sampling data collected below the McNary spillway this year with previous years data shows a decrease of 16 to 20% through the spill discharge range of 97 to 200 kcfs.

Table 12.--Spill deflector tests, including dates, test conditions, and average N₂ values for forebay and spillway tailrace at McNary Dam - 1976.

•

.

.

•

.

.

Date Mo/Day	Water temp. (°C)	Forebay N ₂ . (% sat)	No. of bays spilling	Gate opening pattern	Spill flow rate (kcfs)	Tailrac N ₂ avg. (% sat)
4/7	7.0	107	. 1	Bay w/ deflector	5	108.2
4/7	7.0	107	1	uerrector.	7	109.2
4/7	7.0	107	1		9	110.2
4/7	7.0	107	1	11	14	112.3
7/15	17.0	114	1	**	14	114.5
7/15	17.1	114	1	F F	7	116.8
7/16	17.2	113	1		9	113.4
7/16	17.2	113	1	11	14	114.8
4/7	7.0	107	1	Bay w/o deflector	5	124.3
4/7	7.0	107	1	uerrector "	7	122 6
4/7	7.0	107	1	11	0	122.6
4/7	7.0	107	1	11	1/	121.6
7/15	17.0	114	1		14	125.1
7/15	17.1	114	1	11	4	126.0
7/16	17.3	113	1	* *	0	126.5
7/16	17.3	113	1	11	14	125.7
4/14	8.8	110	18	Uniform gata	14	126.9
				Uniform gate opening	72	114.1
4/13	9.0	117	18	**	160	121.1
4/14	8.8	110	18	1/	248	126.1
4/14	8.8	110	22	ODFW='	72	112.8
4/13	8.9	110	22	ODFW	165	121.6
6/9	13.6	119	22	ODFW	75	117.1
6/9	13.7	119	22	ODFW	163	123.2
6/10	13.6	118	22	ODFW	249	128.3
7/15	17.3	114	22	ODFW	72	114.4
7/15	17.3	114	22	ODFW	165	118.8
7/15	17.3	114	22	ODFW	249	123.82
5/10	11.8	115	22	ODFW	143	$117.3\frac{2}{2}$
5/24	12.4	112	22	ODFW	186	$121.0\frac{2}{2}$
6/21	15.1	115	22	ODFW	97	$117.7\frac{2}{2}$
// 5	16.2	116	22	ODFW	103	122.2-

<u>1</u>/ ODFW = gate openings set by Oregon Department of Fish and Wildlife for best water flows to attract adult fish to fish ladder.

43

2/ Data from bi-weekly monitoring selected for spill flows >90 kcfs.

Sampling site 1 mile downstream and near the shore on the spill side of the river.

Uniform gate openings using only bays with spill deflectors created slightly less supersaturation (0 to 2%) than non-uniform gate openings using all spillbays (Table 12). The non-uniform patterns were set using O.D.F.W. operational criteria for the best flows to attract adult fish to entrances of fish ladders.

· Comparison of effects between low and high forebay concentrations

when spill discharge was constant indicates that N₂ levels in the tailrace increased up to 4% when forebay N₂ increased from 110 to 119%. Differences associated with water temperature variations were undefinable due to increases in forebay N₂ levels. As indicated by these data and data from prior testing at Lower Monumental and Lower Granite Dams, spill deflectors have significantly decreased the level of supersaturation in the Snake and Columbia Rivers and should increase the survival of migrating juvenile salmonids.

SUMMARY

1. The mass transport concept was broadened to include hauling from Lower Granite Dam. A total of 1.2 million salmonids were hauled from Lower Granite and Little Goose Dams to Bonneville Dam or the estuary (air transport) in 1976.

2. Transportation from Lower Granite Dam included a continuing investigation of trucking to provide a means of increasing survival of smolts collected at the upper dam. A new concept of transporting fingerling chinook salmon by air was begun. Testing the two transport

systems resulted in marking 238,974 chinook salmon and 165,828 steelhead

trout which were released in various locations. About one-half of the fish released below Bonneville Dam were transported in 5 ppt salt water. A significant reduction of delayed mortality after transport was achieved by using salt water.

•

.

.

.

.

.

•

•

•

Research was conducted at Lower Granite Dam to determine if 3.

fish disease was of significant magnitude to influence survival of

transported chinook salmon smolts in 1976. In addition, about 1200 chinook salmon fingerlings were transported to and held directly in seawater to determine if any freshwater diseases were contributing to delayed mortality after the fish reached salt water. The combined results of the studies indicate that contagious diseases were not a serious factor influencing survival among transported chinook salmon in 1976.

4. Descaling or injury of chinook salmon smolts was monitored at the marking buildings at Lower Granite and Little Goose Dams. The

descaling rate was 7% and 11.5%, respectively, indicating that steps

need to be taken to reduce descaling--especially at Little Goose Dam.

5. Descaling attributed to standard traveling screens was monitored at Lower Granite Dam. The descaling rate was about 3.5%, which is down from the 6.4% reported last year.

6. A new adjustable angle traveling screen was tested at Lower Granite Dam. Spring tests were limited because of mechanical problems, but full-scale tests were accomplished in October-November. Best

guidance and least descaling (hatchery-reared spring chinook) occurred

with a lighted screen in the bulkhead slot at screen angles 50 to 65°. Average recovery was 85% and descaling was nil. With screen lights off, guidance decreased to 75% and descaling increased slightly. Guidance at 45°, the angle used on the standard screens, was significantly less effective than the other angles tested (50 to 65°). Poorest guidance occurred with the screen in the fish-screen slot. Turbine load (155 vs

125 megawatts) did not have a significant impact on guidance in the bulkhead slot. In the fish screen slot, better guidance was noted at 125 megawatts, but significance is doubtful since fewer tests were made. 7. Tests were conducted to determine the best orifice operating condition to provide egress of fingerlings from the gatewells at Lower Granite Dam. We concluded that both 8-inch orifices should be used with the orifice light on.

8. At Little Goose Dam mass transportation of smolts was emphasized.

Further testing of transportation of fingerlings in salt water (10 ppt)

was accomplished. About 850,000 fingerlings were counted, of which 188,000 chinook salmon and 129,000 steelhead trout were marked for mass transport (truck) experiments. The overall delayed mortality was down significantly from the 12% delayed mortality reported last year. Average delayed mortality of chinook salmon hauled in fresh water was 3 to 6% vs 4% for smolts hauled in salt water; no significant reduction of delayed mortality could be detected for smolts hauled in salt water. However, average transport mortality for chinook salmon and steelhead trout was

noticeably lower in saltwater hauls than in freshwater hauls (<.1%

46

mortality in salt water vs about .5% in fresh water).

Adults returning from smolts released from tests at Lower 9. Granite Dam in 1975 and from similar studies at Little Goose Dam in 1973 were captured at the trap facilities at Little Goose Dam. Returns of one-ocean chinook salmon and steelhead trout (75 and 200, respectively) from smolts transported from Lower Granite Dam in 1975 indicate a

0

.

•

.

.

.

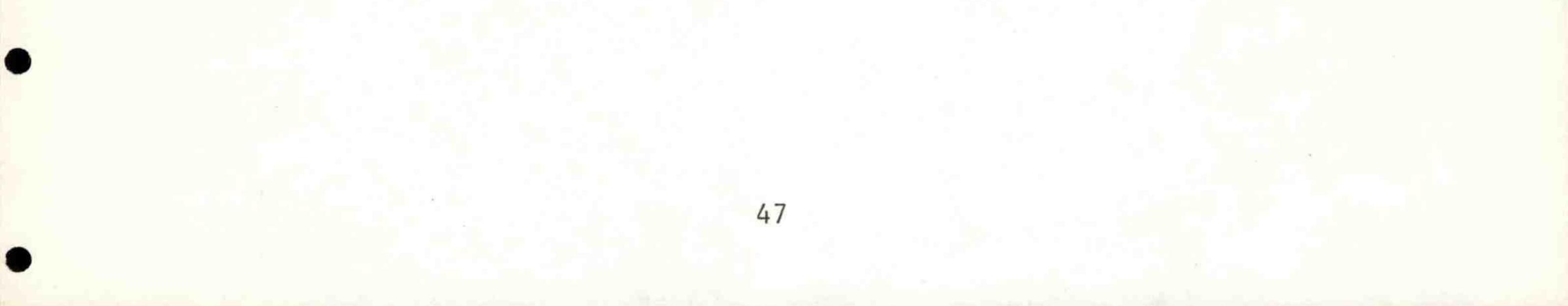
•

•

transport benefit ratio of 3.0 to 1 for chinook salmon and 2.5 to 1 for

steelhead trout. Return of adults from releases of smolts from Little Goose Dam in 1973 are virtually complete. The transport benefit ratio for chinook salmon is 12.8 to 1 and 13.3 to 1 for steelhead trout. Transport from Lower Granite and Little Goose Dams is continuing to be encouraging as a solution for smolt passage problems on the lower Snake River.

10. Dissolved gas concentrations in the lower Snake and Columbia Rivers were monitored again this year. In addition, intensive N, sampling was carried out to evaluate the effectiveness of newly installed spill


deflectors at Little Goose and McNary Dams. Concentrations of dissolved

gasses in the Snake and Columbia Rivers were generally less than

observed in previous years with similar river conditions. The spillway

deflectors installed at Little Goose and McNary Dams were effective at

reducing dissolved gas concentrations over a wide range of flows.

Appendix Table 1 .--Date, brand position, wire tag code, release location, and number of chinook salmon and steelhead trout released as controls above Lower Granite Dam, 1976.

Date	Brand position 1/ and symbol	Wire ^{2/} tag color	Release site	Chinook salmon	Steelhead trout
4-13	LA-P	W-O-LtGr	Clarkston, WA	4,181	689
4-14	LA-P	W-O-LtB1	11	4,274	856
4-15	LA-P	W-O-LtGr	11	1,420	559
4-16	LA-P	W-O-LtGr		2,909	795
4-20	LA-P	W-O-LtGr	**	2,266	1,943
4-23	LA-P	W-O-LtGr	11	1,747	1,492
4-24	LA-P	W-O-LtGr	**	1,515	1,589
4-28	LA-5	W-O-LtGr	11	2,725	1,046
4-30	LA-5	W-O-LtGr		2,486	1,912
5-4	LA-5	W-O-LtB1	**	124	3,197
5-5	LA-rd	W-O-LtGr		1,317	4,375
5-10	LA-H	W-O-LtGr	11		2,744
5-11	LA-H	W-O-LtGr	**	2,934	1,502
5-12	LA-H	W-O-LtB1	**	129	3,242
5-13	LA-H	W-O-LtB1	11	527	2,670

5-14	LA-5	W-O-LtB1	11	76	3,081
5-17	LA-d	W-O-LtB1	11	56	4,031
5-21	LA-d	W-O-LtB1	"		3,388
5-24	LA-d	W-O-LtB1	11		2,876
			TOTALS	28,686	41,987

<u>1</u>/ LA indicates brand position; left anterior
<u>2</u>/ Colors on wire tags; W-White, O-Orange, LtGr-Light Green, LtBl-Light Blue

Appendix Table 2.--Date, brand position, wire tag code, release location, and number of juvenile chinook salmon and steelhead trout marked and transported by truck in 5 ppt salt water from Lower Granite Dam, 1976.

Date	position 1/ symbol	Wire ^{2/} tag color	Release site	Chinook salmon	Steelhead trout
4-15	RA-L	W-O-B1-LtB1	Bonneville boat launch	8,674	14
4-19	RA-L	W-O-B1-LtB1	**	3,088	5,119
4-27	RA-L	W-O-B1-LtB1	11	4,063	3,579
4-29	RA-L	W-O-BL-LtB1	11	9,136	
4-30	RA-L	W-O-B1-LtB1	11	4,042	
5-1	RA-L	W-O-B1-LtB1	11	5,116	
5-2	RA−t	W-O-B1-LtB1	**	9,248	
5-5	RA−⊢	W-O-Gr-LtGr		2,109	7,792
5-7	RA-9	W-O-L-O	Near ice and trash sluice at Bonneville Dam	1,363	8,006
5-10	RA-9	W-0-L-0	**	11 	12,288
5-12	RA-9	W-0-L-0	**	6,505	3,608
5-14	RA-9	W-ROX	11	3,219	5,865

			TOTALS	61,446	69,145
5-28	RA-0	W-ROX	"		4,629
5-24	RA-0	W-ROX	**	1,989	6,287
5-18	RA-0	W-ROX	**	329	6,540
5-15	RA-9	W-ROX	**	2,565	5,418

1/ RA indicates brand position; right anterior

•

.

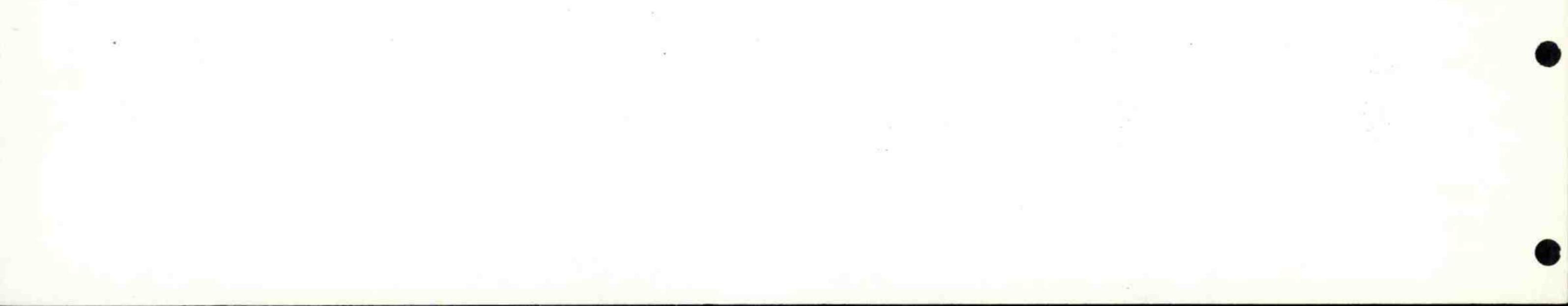
.

0

•

2/ Colors on wire tags; W-White, O-Orange, B1-Blue, LtB1-Light Blue, GR-Green LtGr-Light Green, R-Red, ROX-Red Oxide, L-Lavender

Appendix Table 3.--Date, brand position, wire tag code, release location, and number of juvenile chinook salmon and steelhead trout marked and transported by truck in fresh water from Lower Granite Dam, 1976.


Date	Brand position 1/ and symbol	Wire ^{2/} tag color	Release site	Chinook salmon	Steelhead trout
4-12	RA-W	W-O-R-ROX	Bonneville boat launch	4,140	177
4-13	RA-W	W-O-R-ROX		8,772	788

4-16	RA-W	W-O-R-ROX	"	4,979	2,065	
4-22	RA-W	W-O-R-ROX	11	2,789	2,889	
4-26	RA-Z	W-O-R-ROX	* *	11,800		
4-28	RA-S	W-O-R-ROX	11	8,384	1,385	
5-3	RA-Z	W-O-Y-YOX	11	6,643		
5-6	RA-2	W-0-0-0	Near ice and trash sluice at Bonneville Dam	2,405	5,323	
5-8	RA-2	W-0-0-0	**	398	7,491	
5-11	RA-2	W-0-0-0		9,949	1,919	R
5-13	RA-2	W-0-0-0	"	4,591	4,008	
5-17	RA-N	W-0-0-0	11	2,872	2,656	

			TOTALS	72,918	54,696
6-1	RA-7	W-BL	**	1,738	4,884
5-26	RA-N	W-BL	11	870	7,680
5-21	RA−N	W-BL	11	2,173	5,311
5-19	RA-N	W-BL-ROX	11	359	5,148
5-17	RA-N	W-Pur-Br-ROX	11	56	2,972

1/ RA indicates brand position; right anterior

2/ Colors on Wire Tags; W-White, O-Orange, R-Red, ROX-Red Oxide, Y-Yellow, YOX-Yellow Oxide, Pur-Purple, Br-Brown, BL-Blue

Appendix Table 4.--Date, brand position, wire tag code, release location, and number of juvenile chinook salmon and steelhead trout transported in 5 ppt salt water by airplane from Lower Granite Dam, 1976.

Date	Brand position 1/ and symbol	Wire ^{2/} tag color	Release site	Chinook salmon	Steelhead trout
4-21	RA-H	Orange	Beacon Rock	6,822	
4-23	RA-S	White	Near Tongue Point (Estuary)	8,067	
4-27	RA-4	W-Y-Y-LtGr	**	10,341	
4-29	RA-H	W-Pur-Y-Gr	Beacon Rock	10,507	
5-1	RA-H	W-Pur-Y-P	11	10,074	
5-3	RA- 🗭	W-Pur-Y-YOX	Near Tongue Point (Estuary)	10,727	
5-4	RA-=	W-Pur-LtB1-P	Beacon Rock	9,715	
5-6	RA-A	W-Y-Y-LtB1	Near Tongue Point (Estuary)	9,661	
5-7	RA-¤	W-Pur-YOX-YOX	Beacon Rock		4,961
			TOTALS	75,914	4,961

1/ RA indicates brand position; right anterior

•

•

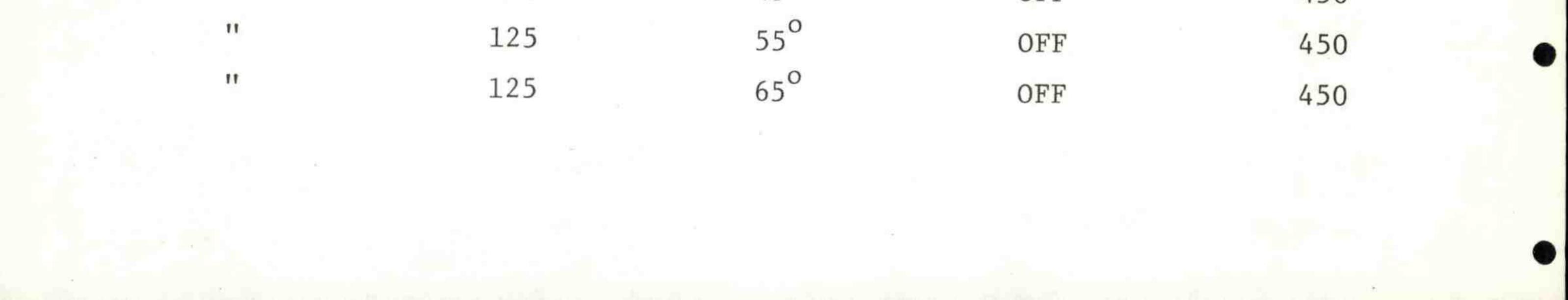
•

•

•

•

.


<u>2</u>/ Colors on wire tags; W-White, O-Orange, Y-Yellow, YOX-Yellow Oxide, LtBl-Light Blue, Pur-Purple, Gr-Green, LtGr-Light Green, P-Pink

Appendix Table 5.--Experimental design covering a wide range of conditions

for adjustable angle traveling screens.

			the second se	the second se
Test slot	Turbine load	Screen angle	Light condition	Number fish
Bulkhead slot	155	45 ⁰	ON	600
**	155	45 [°]	OFF	600
**	155	50 [°]	ON	450
11	155	50 [°]	OFF	600
11	155	55 ⁰	ON	450
11	155	55 ⁰	OFF	600
	155	60 ⁰	ON	450
	155	60 ⁰	OFF	450
**	155	65 ⁰	ON	450
"	155	65 ⁰	OFF	450
11	125	45 ⁰	ON	450
**	125	45 [°]	OFF	600
**	125	50 [°]	ON	450
11	125	50 [°]	OFF	450
11	125	55 [°]	ON	450
**	125	55°	OFF	600
"	125	60 ⁰	ON	450
11	125	60 ⁰	OFF	450
11	125	65 ⁰	ON	450
11	125	65 [°]	OFF	600
Fish screen		0		
slot	155	45 [°]	ON	450
**	155	45 ⁰	OFF	450
	155	55°	ON	450
**	155	55°	OFF	450
11	155	60 [°]	OFF	450
11	155	65 ⁰	ON	450
**	155	65 [°]	OFF	450
	125	45 [°]	OFF	450

Appendix Table 6 .--Experimental design for selected conditions testing the modified adjustable angle screen and various standard screens in the bulkhead slot.

•

۲

•

Screen	Screen angle	Turbine load	Light condition	Number fish
New-33% pl	45 ⁰	155	ON	450
New-33% pl	50 [°]	155	ON	450
New-33% pl	55 ⁰	155	ON	450

Standard 42-48	45 [°]	155	OFF	450
Standard 42-33	45°	155	OFF	450
Standard 72-48	45 [°]	155	OFF	450
Standard 72-33	45 [°]	155	OFF	450
New-33% pl	65 [°]	155	ON	450
New-33% p1	60 ⁰	155	ON	450

Appendix Table 7.--Date, brand, brand position, wire tag code, release location, and number of chinook salmon and steelhead trout released as controls above Little Goose Dam, 1976.

Date	Brand position 1/ and symbol	Wire ^{2/} tag color	Release site	Chinook salmon	Steelhead trout
April 13-26	LA- '7\	W-Y-Y-Y	Central Ferry	12,215	4,368
April 27	LA- 7	Solid Lavender	Central Ferry	3,231	
April 28 - May 7	LA - X	W-PU-Y-R	Central Ferry	20,443	5,425
May 13 - June 4	LA- JL	Pink stripe	Central Ferry	5,524	21,103
June 6	LA- \mathcal{Y}	Pink stripe	Central Ferry	633	2,044
			TOTALS	42,046	32,940

1/ LA indicates brand position; left anterior

2/ Colors on wire tags: W-White, Y-Yellow, PU-Purple, R-Red.

Appendix Table 8 .--Date, brand, brand position, wire tag code, release location,

and number of chinook salmon and steelhead trout marked and transported by

truck in fresh water from Little Goose Dam, 1976.

•

•

•

•

.

Date	Brand position 1/ and symbol	Wire tag ^{2/} color	Release site	Chinook salmon	Steelhead trout
April 14-27	RA-J	Solid green	Bonneville boat ramp	19,131	5,520

April 28-29	RA-J	W-Y-P-G	**	4,705	1,657
April 30- May 4	RA-4	Solid green	11	12,403	3,489
			SUB-TOTAL	36,239	10,666
May 6 - June 2	RA-ſ	Green stripe	Bonneville powerhouse	28,145	29,798
June 9-21	RA-5	Green stripe	**	4,221	2,823
			SUB-TOTAL	32,366	32,621
			TOTAL	68,605	43,287

1/ RA indicates brand position; right anterior

2/ Colors on wire tags; W-White, Y-Yellow, P-Pink, G-Green

Appendix Table 9 .--Date, brand, brand position, wire tag code, release location, and number of chinook salmon and steelhead trout marked and transported by truck in 10 ppt salt water from Little Goose Dam, 1976.

Date	Brand position 1/ and symbol	Wire tag 2/ color	Release site	Chinook salmon	Steelhead trout
April 15-26	RA-V	Solid yellow	Bonneville boat ramp	16,694	7,114

April 28-30	RA- <	W-Y-PU-G		12,731	384
May 1-3	RA- <	Solid yellow	**	12,490	1,796
May 5	RA- ⊲	Yellow stripe	11	4,329	2,383
			SUB-TOTAL	46,244	11,677
May 7-June 3	RA-Λ	Yellow stripe	Bonneville powerhouse	29,755	35,912
June 7-18	RA- ⊳	Yellow stripe		6,083	6,285
			SUB-TOTAL	35,838	42,197

82,082

TOTAL

53,874

2/ Color on wire tag; W-White, Y-Yellow, PU-Purple, G-Green.

Appendix Table 10.--Bi-weekly measurements of dissolved gas saturation and temperature for the Columbia and Snake Rivers April-August, 1976

•

•

.

OCATIO	9-4	ME DEPTH TEMP	TEMP	NG/L	OXYGEN	TWO	PHERIC + AR	TOTAL PRE	SAS	NO. GATE OPEN	SPILL	PLOW	AM I	FLOW-	ATLY KCFS TOTAL
RANITE FOREBAY	160		7.8	11.70	101.1	5.92	104.5	68.0	103.7	11	0.0	0.0	740	0	C
UP MID RESER	1605	5	7.8	11.47	0°66	15.67	102.8	55.1	102.0	٢	85°0	155.0	240	84	153
E GOCSE FOREB	1515	0	8°9	13.17	116.4	17.96	120.4	886.5	119.3	2	0 . 0	0 ° 0	638	0	C
E GOCSE FU	1520	ŝ	8.9	13.43	118.7	18.33	122.9	904°2	121.7	2	84.0	149.0	638	84	149
I UP CENTE	1435	0	8.4	13.97	121.5	16.89	124.7	923.0	123.7	60	0.0	0 . 0	240	0	C
I LP CENTE	1440	5	8.4	14 ° 03	122.0	18.89	124.7	923.8	123.8	8	81°0	147°0	240	79	145
I UP CENT	00hT	0	9°0	13.30	117.0	18.05	120.4	893.9	119°4	5	0 • 0	0.0	0 + 1	0	0
ARBOR FORE	1405	5	9°1	13.57	119.6	18.42	123.2	914.0	122.1	σ	60°0	143.0	0 * *	74	152
Y DAM FOREBAY	1330	0	8.7	13.17	114.6	17.13	113.1	850.2	113.2	13	43°0	242.0	340	69	238
Y CAP FOREBAY	1335	23	8° 0	13.30	115.2	17.03	112.0	844.7	112.4	1	43.0	242.0	340	69	238
Y DAW FOREBAY	1320	0	0°6	12.77	111.9	17.13	113.8	850.6	113.2	13	43.0	242.0	340	69	23.8
Y DAM FOREBAY	1325	N) N)	0°6	12.89	113.0	17.50	116.3	866.6	115.4	13	43.0	242.0	340	69	238
Y TAILRACE SIDE	1310	0	8.7	13.01	112.9	17.25	113.6	852.7	113.2	13	43.0	242.0	. 270	69	238
Y TAILRACE	1300	0	8.7	12.77	110.8	17.03	112.2	841.3	111.7	13	43.0	242.0	270	69	238
I DN POWE	1030	0	8.1	11.70	100.1	15.55	101.0	759.1	100.8	0	0.0	256 ° 0	265	31	239
UP CNT	1035	10	8.1	11.84	101.3	15.83	102.8	771.5	102.4	0	0.0	256.0	265	31	239
I UP CNTR ALLES FORE	1000	0	7.9	12.24	103.8	16.11	103.8	783.9	103.7	0	0.0	217.0	160	64	225
LLES FO	1005	5.5	8.1	12.24	104°3	16.01	103.7	783.9	103.7	0	0 • 0	217.0	160	64	225
I UP CENTER VILLE FOREBAY	925	0	8.0	11.97	101.5	15.83	101.9	771.6	101.7	18	88.0	223°0	74	96	231
I UP SPILL SID VILLE FCREBAY	930	3	8.1	12.24	104.0	16.11	103.9	787.5	103.8	18	88.0	223.0	74	96	231
VILLE TAILRACE	915	•	8.3	14.23	121.3	19.31	125.0	940.5	123.8	18	88°0	223.0	18	96	231
IS	830	•	8.7	12.72	109.4	16.85	110.0	833.4	109.7	•	0.0	0 ° 0	74	0	C

April 12, 1976

.

.

 	-	LL.	_		-		-	<u> </u>	-	~	-	-		-				-						-				- Annual Property in the local division of t			-		1.00		2.4			1000	100222	1	1000		1.	
		_																							-						1000	-	-	-	100		-			1.1	100	-	1 1	
 4.100	-	4.00			-		-	- 100	-	-		-	-	-	-	rr		CY.		C	-	PY.	-	n	-	or or	-		- 30		-							L	- All -		-	-	U U	
 1.3	-	0	-	_	-	_	-		-	-	-	_	-		-	L.A.	- AL		-	and the second	-	Labor	-	Sec.	-	_	-		-		-	-	-	_		-		_	_					
 	-		-	_		_	_	_	_		-	_								12								-		-						100				1.20		-	10	
						Berni I										-		-		67		51		S		C1		1		1						-		~		-		_		
						-												-						-		-		-	1	-						_		The Lot of Lot				_		
				-		07.												1000	1.000	- 1-2				1.00		1 Schoolse		-		-			-		-		24		0.1				لما	
 -	P2.4	-	0.		willer.	Sec.	- da	ev.	-	5.00	-	1.1.1	-	1.1		1	-	-		-	-	1		-	-	-	-		-			141	-		-	-		-	N N .	~	-	-	uu	
		CL.	~~	_	-	-	-	u.,	-	hales -	-	L	-	144	-	-		-	_	Ser.	~	-		-	-	-	-	-	-	-	_	_		_	100						() ()			
 _				-								100-00	-		-								1.00							-		-		-		~		C		0	-	0	ev.	
 2.00		150		ALC: N	~	-	-	20	-	100	-	6 3	~		-	6.3	~		-	6 1	-	4 3	-	6.3	-	6.3	-		-		-	_	-	-	-	\mathbf{u}	-	~	-	\sim	-	0	œ	
 	-			-	-	-			-		~	\sim	-	~		~	-	~		-		-		-		-		-		-								10000		0.000				
 						200		1.000				a state of a		- 1-1-1-1		and the second s		and the second second		-	A 14 4			-				-	· · · · · · · · · · · · · · · · · · ·	and the second s					-	PY 3	-	\sim	-	\mathbf{n}	-		0	
 					-		-		-		and a	And a	and a	Barriel .	-	-	and t	-	danal in	-	-	-	diama di	-	Course of the local division of the local di	_	_		-		-	_	-	-	-	0.0	6 -1	L U.	-			\sim	LL	
 	-	_	-	_		_	-	_		_		-				and the second		Sec.		-		-		-		-				-						_	100	-			12 2		۰	
 -		_		_		_				_																																		

110

LOCATION		DEPTH	TEM FT	E E	201	ATMOSP ML/L	SPHERIC	TOTAL PRES	GAS SURE (SA	CPEN	HOURLY KCF		MPLE FTV	MEAN PLOW	LUX LUX
ANITE FOREBAY	1546	0	10.0	10.87	66.0		104.9	767.1		1 60		18.0	740	29	1 -1
ANITE FOREBAY	1546	33	6°6	10.83	98°3	15.23	104.7	765.0	103.3	8	60.0	118.0	740	59	117
GCOSE FCREBAY	1510	0	9°6	12.03	108.9	16.76	114.8	842.6	113.4	Ø	77.0	116.0	638	62	116
GCOSE FOR	1510	5	9.7	12.03	108.4	17.16	117.1	854.8	115.0	80	77.0	116.0	638	62	116
NUNENT FO	1440	0	9°7	12 。98	116.5	16.03	122.6	902.4	121.0	80	55.0	112.0	540	61	113
NUMENT FOR	1440	23	9°8	12.81	115.2	18.09	123.3	904.6	121.3	Ø	55.0	112.0	540	61	113
RBOR FOREB	1406	•	10.2	13.08	118.4	17.96	123.0	911.1	121.7	6	29.0	114.0	0 1 1	40	117
RECR FORE	1406	33	9°5	12.98	115.5	18.15	122.4	903.1	120.6	5	29.0	114.0	0 1 1	40	117
CAN FOREBAY	1209	0	0°6	13.08	114.7	17.49	116.3	869.2	115.7	20	44.0	273.0	340	73	265
CAN FOREBAY	1209	34	8.8	12.87	112.3	17.49	115,8	862.4	114.8	20	0.44	273.0	340	73	265
CAN FOREBAY	1209	•	9.0	13.29	116.5	17.36	115.4	866.8	115.4	20	44.0	273.0	340	73	265
DAN FOREBAY	1209	33	8.8	12.87	112.3	17.02	112.7	844.2	112.4	20	44.0	273.0	340	73	265
TAILRACE STOP	1149	0	6°0	13.08	114.4	17.23	114.2	858.7	114.0	20	44.0	273.0	270	73	265
TAILRACE	1149	0	0°6	12.87	112.6	17.43	115.5	863.7	114.7	20	44.0	273. n	270	73	265
AY FOREBAY	1105	0	9.1	11,92	104.5	16.42	109.1	813.4	108.0	16	32.0	313.n	265	46	266
AY FORE	1105	23	9.1	11.85	103.8	16.42	109.1	812.3	107.8	16	32.0	313.0	265	46	266
LLES FORE	1038	0	8.8	12.03	104.3	16.56	108.9	814.6	107.7	0	0.0	265.0	160	29	242
LLES FOREB	1038	10	8.8	11.82	102.5	16.29	107.1	801.3	106.0	•	0.0	265.0	160	29	242
TLLE FOREBAY	1002	5	8.9	11.70	101.3	15.83	104.0	783.4	103.3	16	119.0	252.0	74	113	246
ILLE TAIL	1002	•	9.1	14.01	121.7	19.24	126.7	951.7	125.3	16	119.0	252 ° N	20	113	246
IA RIVER	932	•	9.1	12.45	108.2	17.36	114.4	857.2	112.8	0	0.0	0.0	26	0	c
PIA RIVER OTT CENTER	852	•	9°4	12.17	106.4	16.69	110.6	832.6	109.6	•	0.0	0.0	14	0	c

31 M. & S.S.

89

1.00

April 26, 1976

1.00

PROBLEM NO PARTY CONTRACT STATES STAT

								510								
LCCATION	TIN	DEP	TH TEMP		YGEN	ATMO MLA	SPHERIC	TOTAL G PRESS	GAS SSURE (SAT	CATE OPEN	SPIL	FS F	SAMPLE	FLOW-	ATLY KCFS TOTAL	1
RANITE FOREBAY	000		11.6	10.82	102.2	14.8	0 10	776.			105.0	167.n	240	111	1	
RANITE FOREBAY	1000	33	11.6	10.48	0*66	24.43	102.9	755.6	102.0	8	105.0	167.0	0 + 4	111	174	
FOREB	1053	0	12.5	12.71	122 .2	17.29	125.2	923°2	124 .2	8	98°0	164.0	638	112	173	
E GOOSE FO	1053	50	11.5	12.40	116.5	17.37	123.1	902.5	121.4	Ø	98°0	164 ° 0	638	112	173	
I UP CENTE CNUMENT FO	1132	0	11.6	13.03	122 .2	16.02	127.6	940°4	126.1	80	78.0	146.A	240	105	169	
CONUMENT FO	1132	33	11.7	13.03	122.5	18.24	129.4	4° 156	127.6	8	78.0	146.0	240	105	169	
ARBOR FORE	1216	0	12.0	12.50	118.0	17.44	124.1	916.6	122.4	10	51.0	143.0	440	84	166	
ARBOR FOR	1216	33	12.1	12.61	119.2	17.44	124.3	920.0	122.9	10	51.0	143.0	0 1 1	84	166	
RIVER-MOU	1237	10	12,3	13.05	123.5	16.38	131.2	969°8	129.1	0	0.0	0 . 0	341	0	C	
Y DAN FOREBAY	1430	0	12.5	13.13	124,9	16.05	115.0	877.5	116,8	22	143.0	349.0	340	194	397	
Y DAW FORERAY	1430	33	12.0	12.92	121.5	16.27	115.4	874.4	116.4	22	143.0	349.0	340	194	397	
Y CAM FOREBAY	1430	0	12.2	13.03	123.1	16.86	120.0	903.8	120.3	22	143.0	349.0	340	194	262	
Y CAM FOREBAY	1430	23	11.8	12.71	119.0	17.07	120.6	900.7	119.9	22	143.0	349.0	340	194	397	
Y TALLRACE	1500	0	12.3	12.18	115.1	16.49	117.3	877.9	116.6	22	143.0	349°N	270	194	397	
SPILL SIDE	1500	0	12.3	12.29	116.1	16.42	116.9	876.6	116.4	22	143.0	349°0	270	194	397	
DAY FOREB	1600	0	12.0	12.08	113.3	15.98	113.0	850.0	112.8	20	113.0	403°N	265	116	398	
DAY FORE	1600	23	12.2	12.32	116.0	16.05	114.0	860.0	114.2	20	113.0	403.0	265	116	398	
ALLES FORE	1625	0	12.4	12.18	114.9	16.49	117.2	880.0	116.4	22	88.0	40°°0	160	132	385	
ALLES FORE	1625	5	12.3	12.18	114.6	16.56	117.4	881.2	116.6	22	88.0	403°0	160	132	385	
VILLE FOREBAY	1650	0	12.4	11.97	112.6	16.35	115.8	870.8	114.8	18	253.0	387.0	74	249	585	
VILLE FOREBAY	1650	33	12.5	11.97	112.8	16.35	116.0	872.7	115.1	18	253°0	387.0	74	249	383	
VILLE TAILRA	1703	0	12.3	13.33	124.8	18.49	130.5	78.1	128.8	10	253.0	387.0	27	240	383	
BIA RIVER	1736	0	12.4	12,82	120.3	17.74	125.4	641°3	123.9	0	0.0	0.0	26	0	0	
IMBIA RIVER	1800	0	12.6	12,50	117.8	17.15	121.7	915.8	120.5	0	0.0	0.0	14	0	C	

May 10, 1976

34.5

NCIC NON NEW THE TELEVENENE NEW NEW THE TELEVENE NEW THE TELEVENE NEW THE NEW THE TELEVENE NEW THE NEW THE TELEVENE NEW TELEVENE NE

LOCATION	F 1	0 1	A T T T	- SW	L (SAT		HERIC + AR	TOTAL PRE WM HG	AL GAS RESSURE HG (SAT	CATE OPEN		101	SAMPLE ELEV F7	MEAN FLOW	CAILY -KCFS TCTAL
ANITE FOREBAY	1627	11		10.32	98.7	14.03	II and	745.1	100.6	0	11 05	146.0	740	63	12
ANITE FOREBAY	1627	33	11.7	10.64	100.8	14.84	106.0	776.4	104.8	89	96.0	146.0	740	93	155
GOCSE FO	1600	0	12.2	12.08	115,3	16.75	120.5	885.4	119.1	Ø	104.0	163.0	638	96	155
GOCSE FO	1600	23	12.0	12.08	114.8	17.01	121.9	892.6	120.1	ø	104.0	163.0	638	96	155
NUMENT FO	1524	0	12.2	12°66	120.5	17.71	127.0	934 ° 1	125.2	æ	84.0	151.0	240	84	147
2	1524	10	11.9	12,69	119.9	17.97	128.1	939.4	125.9	60	84.0	151.0	540	94	147
RBOR FORE	1500	•	12.3	12.43	118.1	17.18	123.0	910.7	121.7	10	66.0	134 ° N	0 + +	70	149
REOR FORE	1500	5	12.0	12.43	117.3	17.18	122.3	905°0	120.9	10	66.0	134.0	0 11 11	70	149
RIVER-MOU	1445	•	12.5	12.78	121.6	17.71	126.9	7.14P	125.4	•	0.0	0.0	341	0	c
DAM FOREBAY	1240	0	12.9	12.43	119.3	16.48	119.1	892.5	118.8	22	186.0	371.0	340	200	357
LP SPILL	1240	10	12.3	12.06	114.1	15.70	112.0	843.1	112.2	22	186.0	371.0	340	200	357
CAN FOREPAY	1235	0	12.6	12.31	117.4	16.92	121.5	903.6	120.3	22	186.0	371.0	340	200	357
CAM FOREBAY	1235	33	12.3	12.31	116.6	16.92	120.7	898°0	119.5	22	186.0	371.0	340	200	357
UP POWER SIDE TAILRACE	1208	0	12.4	12.43	117.7	16.97	121.0	903.4	120.0	22	186.0	371.0	270	200	357
TAILRACE	1225	0	12.4	12,31	116.5	16.75	119.4	892°5	118.5	22	186.0	371.0	270	200	357
AY FOREBAY	1124	0	13.4	11.37	110.1	15.17	110.4	829.8	110.2	19	40.0	356.0	265	81	354
AY FORE	1124	33	12.5	11.54	109.4		112.2	839.0	111.4	19	40.0	356.0	265	81	354
LLES FOREBA	1046	•	12.6	12.66	119.9		125.1	934.5	123.6	22	69.0	337.0	160	102	339
LLES FOR	1046	53	12.6	12.66	119.9		127.0	945.5	125.1	22	69.0	337 ° N	160	102	339
UP CENTER ILLE FOREBAY	1025	0	12.5	11.84	111.6		114.5	861.9	113.7	18	208.0	345.0	74	208	345
ILLE FOREBAY	1025	51	12.5	11.84	111.5	15.61	110.8	839.6	110.7	18	208.0	345°N	74	208	545
ILLE TAI	1013	•	12.6	13.25	124.9	19.15	136.0	0.0	133.1	16	208.0	345°0	26	208	345
IA RIVER	943	0	12.8	12.55	118.8	17.62	125.6	940.3	123.8	0	0.0	0.0	26	•	C
PIA RIVER	848	0	13.0	12.19	116.0	17.10	122.4	916,8	120.6	•	0.0	0.0	14	•	•

May 24, 1976

.

.

0

PCECONDUCTION POLICY PO

LCCATION	TIN	CEPT4	TEMP	KG/L	OXYGEN	ATMOSPHEI	AR-	TOTAL G	GAS SURE (SAT	PEN.	I Q	FLOW TOTAL	SAMPLE	FLOW-	dx+1	
RANITE FOREBA	909	0	14.0	10.38	103.5	1 4 .	110	787.4	106.3		65.0	31.0	740			1
MI UP MID RESERVOIR GRANITE FOREBAY	1606	5	13.1	10.37	101.4	14.34	105.5	774.2	104.5	60	65.0	131.0	740	69	131	
E GCOSE FOREB	1536	0	13.3	12.06	118.1	16.33	120.2	887.9	119.5	40	55.0	122.0	638	68	130	
E GCOSE FO	1536	3	12.6	11.94	115.0	16.70	121.2	888.8	119.6	8	55°0	122.0	638	68	130	
I UP CENTE	1458	0	13.9	12.84	126.9	17.63	130.9	966.3	129.6	80	42°0	109.0	240	53	123	
NUMENT FO	1458	33	12.6	12.76	122 . 5	17.81	128.8	947.5	127.0	0	42°0	109.0	540	59	123	
REOR FORE	1432	0	15.7	12.71	130.2	17.35	133.1	987.0	131.9	10	36.0	119.0	0 17 17	44	123	
REOR FORE	1432	5	12.6	12.58	120.4	17.35	125.0	925°5	123.6	10	36.0	119.0	440	5 5	123	
I LP CENTE RIVER-MOL	1417	0	13.1	12.58	121.3	17.35	125.9	935.1	124.5	0	0 ° 0	0 0	341	0	C	
Y DAW FOREBAY	1240	0	14.2	12.19	120.5	15.41	114.3	866.3	115.3	22	63°0	289° 0	340	101	294	
CAN FOREBAY	1240	55	13.2	12.19	117.8	15.78	114.7	864.5	115.1	22	63.0	289.0	340	101	294	
Y CAM FCREBAY	1250	0	14.5	12.06	120.0	16.43	122.6	913.8	121.6	22	63.0	289 ° 0	340	101	294	
Y DAW FOREBAY	1250	5	12.8	11.80	113.0	16.61	119.7	886.7	118.0	22	63.0	289.0	340	107	294	
Y TAILRACE SIDE	1158	0	13.3	11.55	111.5	15.80	114.8	857.2	113.8	22	63°0	289.0	270	107	594	
Y TAILRACE	1210	0	13.2	12.06	116.3	16.52	119.8	894°0	118.7	22	63°0	289.0	270	107	294	
L DN POWE	1110	0	13.5	11.42	110.7	15.59	113.8	850°3	112.9	80	16.0	303.0	265	26	301	
LUP CNT	1110	5	13.3	11.55	111.5	15.96	116.0	864.4	114.8	0	16.0	303.0	265	26	301	
I UP CNTR ALLES FORE	1045	0	13.2	11.29	108.3	15.50	112.0	839.2	111.0	0	0 . 0	313.0	160	37	294	
I UP CEN	1045	23	13.2	11.16	107.1	15.50	112.0	837.2	110.7	0	0 • 0	313.0	160	37	294	
VILLE FOREBAY	1010	0	13.1	11.29	107.8	15.69	112.7	845°3	111.5	18	169.0	306.0	74	170	308	
I UP SPILL SI VILLE FOREBAY	1010	5	13.3	11.55	110.8	15.59	112.5	848.7	111.9	10	169.0	306° N	74	170	308	
I UP SPILL S VILLE TAILRA	1000	0	13.3	12.38	118.5	17.48	125.9	941.2	123.9	18	169.0	306.0	54	170	308	
I CN SPILL SI BIA RIVER	931	0	13.2	11.98	114.4	16.33	117.4	884.4	116.4	0	0.0	0.0	26	0	0	
MAIA RIVER	649	0	13.6	11.29	108.8	15.69	113.6	854.0	112.4	0	0.0	0.0	14	0	0	

7, 1976 June

1

TOIDINIMIMITOIO Σ I U I U L J I I I I

OCATIO	TIME	CEPTH	H TEMP		15	ATMOSPHER	P A C	TOTAL GA	GAS SURE (SAT	SATE OPEN	HOUR K SPILL		SAMPLE	MEAN D FLOW-	AXFI	1
FOREBAY	1610		14.6	9.69	0	13.86	11 10	766.9	103.5	11 CO	10	140.0	740	11		11
UP MID RESERVO NITE FOREBAY	1610	5	14.3	9.75	97°3	14.16	106.7	776.0	104.8	80	0° †6	140.0	740	87	138	
UP WID RESE GOOSE FOREB	1531	0	13.9	11.19	111.0	16.16	120.4	878°0	118.1	Ø	92.0	137.0	638	78	136	
P CENTER OOSE FOREB	1531	N N	13.5	11.19	110.0	16.32	120.6	877.8	118.1	89	92.0	137.0	638	78	136	
P CENTER	1500	0	14.1	12.05	119.6	17.43	129.9	949°5	127.3	ø	64.0	129.0	240	62	127	
UP CENTER	1500	3	13.6	12.26	120.3	17.61	129.9	950.7	127.5	Ø	64°0	129.0	540	62	127	
UP CENTER BOR FOREB	1437	0	13,9	11.83	116.6	16.95	125.4	922.0	123.2	10	51.0	133.0	440	58	127	
UP CENTER BOR FOREBA	1437	5	13.6	11.73	114.7	17.03	125.2	918.2	122.7	10	51.0	133.0	440	58	127	
P CENTER	1411	0	13.9	11.73	115.1	16.70	123.1	909.3	121.0	0	0 • 0	0.0	341	0	С	
CAN FOREBAY	1215	0	15.4	11.73	118.9	15.29	116.1	874 °4	116.4	21	97.0	337.0	340	154	320	
P SPILL SIDE AN FOREBAY	1215	20	15.1	11.51	116.0	15.21	114.8	862.4	114.8	21	97.0	337.n	340	154	320	
P SPILL SIDE	1230	0	14.9	11.30	113.3	15.92	119.8	887.0	118.1	21	97.0	337.0	340	154	320	
P POWER SIDE AM FOREBAY	1230	5	14.8	11.41	114.2	15.92	119.5	886.9	118.1	21	97.0	337 ° N	340	154	320	
P POWER SIDE AILRACE	1154	0	15.4	11.46	115.9	15.54	117.7	881.2	117.0	21	0°16	337 ° N	270	154	320	
N SPILL SIDE	1200	0	15.0	11.19	112,2	15,68	117.9	876.7	116.4	21	97.0	337 ° 0	270	154	320	
N POK	1111	0	15.8	10.87	110.9	14°49	110.7	832 . 3	110.5	10	23.0	288.0	265	87	298	
CNTR	1111	5	15.8	10.87	110.9	14.41	110.1	828.7	110.0	10	23.0	288.0	265	87	298	
LES FORE	1045	0	15.7	10.66	108.1	14.57	110.7	830.8	109.9	0	5.0	326.0	160	65	290	
FORERA	2045	5	15.7	10.55	107.0	14.65	111.3	832.7	110.1	0	5.0	326.0	160	59	290	
FOREBA	1015	•	15.4	10.44	104.9	14.65	110.3	826.1	108.9	18	157.0	296.0	74	161	300	
SPILL S FORERA	1015	10	15.4	10.55	106.0	14.73	110.9	831.3	109.6	18	157.0	296.0	74	161	300	
AIL	1003	0	15.5	12.20	122.6	18.30	138.4	0°0	134 . 5	18 1	570.0	2960.n	23	161	300	
DN SPI	933	0	15.4	10.87	109.0	15.36	115.4	864 °4	113.8	0	0 • 0	0.0	26	0	•	
1	850	•	15.7	10.85	109.4	15.44	116.7	872.7	114.8	•	0.0	0.0	14	•	C	

1976	
21,	
aur	

5

1.9

.

۲

•

0

•

	0		< -	J #		20	- v		-			-	-		-		-				-	-	-	-	~				-	-	-	-	-		1.4		-		-		the state		-	12		i i
	-		-		1					đ.,	2	2		CC.		CC.		CC.				15-15				anna a										-									0 0	
*		11 0	ĽÞ		5 3	- 4	u ►	- L.	1 >	1 L	2 24	• 0	H	A	-	4			>		• >-	H	7	-	7	H .		~ >		0	-	0		~ :				2	1.	5	1				XU	<u></u>
		11 0	ב פ	EU	2:	Σ.,	23	ε	15	. 2	2	2	2	T	X	T	×.	LU .	IO	C 2	6	2.	Ω.	2	œ	2. (œ.	2. 0	2	÷	2		2 (.	a		-	2	~	4.		_			100	
		11					-	-										x	P «	1	5	9 8 - 1911	A		4		4	<	1. 	4	1.000	~					-	~	-		-				20	- C.
		11 0	r (VD	L (VP		5 F	- 3	r a	< 1	r ac	3	1.1	3	ia)	s.	4) .	2 3	2	3	2	3	2	3	2	3 2	1 3	T	3	T	3	AI -	TU	1 3	-	CV.	5	CA.	~			1000	15	2.2
		11 7			e •		4 7		. `			E	~	1.3	~	0	~	2 1	DL	2 ~	. U	~	C	~	U	~ (0	Y C	2	0	~	0	` .	L	~ 1		0	-	0	~	0		1000	1	O R	
		11 .		-	1.	- 1-	٠ د		1 -	4	1-	1 _	-		-	-	-	S	1 2	6 🖛	4 2	-	E	-	2	***	2	~ 3	. **	5	-	7	-1		rt (*			-	a	-	ß	4-4	0	100	υa	6

1.00

OCATION	TIME	TIME DEPTH	H TEMP	×	OXYGEN	ATMOSPHEN2 + ML/L	AR- SA	ACI	ASURE	NO. GATE OPEN	SPILL	EN SPILL TOTAL	SAMPLE	FLOW-	CFS OTAL	×.,
ITE FOREBAY	950	0	11	10.0	108.0	13.56	108.9	803.8	108.5	40	18.0	69°0	740	N II		
UP MID RESE NITE FOREBA	950	33	16.2	9.44	98°7	13.66	106.9	778.3	105.1	00	18.0	69°0	740	24	6.5	
DOSE FOR	1025	0	17.7	10.92	117.5	14.63	117.5	870.5	117.1	0	16.0	66 ° D	638	24	99	
P CENTER	1025	5	16.2	10.27	107.0	14.77	115.2	641.9	113.3	0	16.0	66.0	638	54	66	
UP CENTER UMENT FOR	1045	0	16.5	11.14	116.5	15.42	120.5	889.9	119.3	-	0 • 0	64°D	240	21	61	
MENT FO	1045	3	15.4	10.92	111.6	15.77	120.7	883.3	118.4	-1	0°0	0° †9	240	51	61	
UP CENTE	1115	0	16.7	10.92	114.3	15.56	121.7	896.2	119.7	0	0.0	61°0	0 11 11	0	61	
BOR FORER	1115	53	15.6	10.81	110.5	15.63	119.6	878.7	117.4	0	0 • 0	61.0	0 11 11	0	61	
VER-MOU	1130	0	17.8	11.78	125.6	16.89	134.4	4°066	131.8	0	0 . 0	0 • 0	341	0	C	
AN FOREBAY	1300	0	17.6	12.35	131.2	15.20	120.5	918.5	122.3	21	103.0	261.0	100	81	231	
AN FOREBAY	1300	5	15.5	11.47	116.6	15.27	116.3	871.6	116.0	21	103.0	261.0	340	81	231	
AN FOREBAY	1310	0	19.3	11.58	127.4	14.85	121.5	917.9	122 .2	21	103.0	261.0	040	81	231	
AN FOREBAY	1310	33	15.4	11.36	115.2	15.34	116.6	871.3	116.0	21	103.0	261.0	340	81	231	
P POWER SIDE	1320	0	16.2	11.28	116.0	15.88	122.2	907.4	120.5	21	103.0	261.0	270	81	231	
A SPILL	1330	0	15.7	11.14	113.4	15.34	117.0	872.9	115.9	21	103.0	261.0	270	81	231	
FOREBAY	1415	0	18.4	10.71	115.3	14.35	115.2	865.0	114.8	14	42.0	203.n	265	5	201	
Y FOREBA	1415	5	16.4	10.16	104.9	14.49	112.0	830°5	110.3	14	42.0	203.0	265	33	201	
ES FORE	2445	0	16.6	10.38	107.3	14.77	114.2	850°2	112.4	22	46.0	199.0	160	51	194	
ES FORE	1445	33	16.3	10.39	106.7	14.63	112.4	839.0	111.0	22	46.0	199.0	160	21	161	
LE FOREBA	1515	0	16.6	10.49	108.1	14.49	111.6	839°0	110.6	18	82.0	218.0	74	86	221	
LE FOREBAY	1515	33	16.6	10.49	108.1	14.49	111.6	839.0	110.6	18	82.0	218.0	74	86	221	ž.
LLE TAIL	1520	0	16.7	11.10	114.4	15.75	121.4	907.4	119.5	18	82.0	218°N	19	98	221	
IA RIVER	1545	0	17.2	11.25	117.2	15.20	118.3	893.8	117.7	0	0.0	0.0	56	0	c	
BIA RIVER	1615	0	17.3	10.71	111.7	15.13	117.9	883°3	116.2	•	0.0	0.0	14	0	0	

July 5, 1976

+

LUCHANNA CONCONTRACT CONCONT

		88 88 88																								
AI	U C	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.1	1 1	41	4.0	4 0	4 4	**	С	294	294	294	294	294	294	260	260	253	253	267	267	267	с	c	
AN	FLOW	11 00	60	2	2	9	9	22	22	0	108	108	108	108	108	108	32	32	5	5	118	118	118	0	0	
SAMPLE	ELEV		740	638	638	540	540	0 1 1	0 1 1	341	340	340	340	340	270	270	265	265	160	160	74	74	22	26	14	
MC	AL		0	0	0	0	C	0	с	0	C	C	C	C	c	0	C	С	c	c	c	с	0	c	0	

► 11 · _ ٠ ٠ . . • . . • 100 0 II 0 45 48 256 256 280 280 LL. 48 48 48 44 44 313 286 286 0 0 0 ю m. 20 З 0 R) 31 31 0 31 31 -11 > LL 80 2 ax J II НОП 110. • 74.0 74.0 0. • 0.0 • 0 74.0 • 0 0 0.0 2.0 • 0 0 0 0 0 0 0 0 0 74. ٠ • • . . ô . ٠ . ٠ 74 74 L HO 0 0 0 2 0 0 0 2 0 0 0 0 0 S II 20 953 10 81 ---W 2 11 • F & II NO C II O 22 18 0 0 0 0 22 22 22 22 0 18 18 0 0 0 0 0 22 0 0 0 0 11 11 F 11 0 S 3 Ø 0 3 Ю 8 9 -S 0 σ . S RO 9 3 Ð 3 8 00 3 ~ WAII . . 4 . . . ۰ . ٠ ٠0 . • . . 108 NENIN t 00 9 9 5 5 5 0 0 80 00 -------0 ~ --47~110 10 10 10 10 10 10 11 11 10 10 0 0 11 11 11 -11 11 3 --* SOG -11 -1 ----1 -S 11 41 AKINH σ M σ σ • • 6 Ю 5 CV. Ю 3 0 S -3 S ~ ຸ 8 -~ 3 -F a . 11 ٠ . • ٠ . ٠ ۰ N II N 72 934 836 887 836 593 817 837 836 838 833 5 827 821 2 70 0 66 816 CV. 9 2 9 ----83 0 29 83 N = 3 ~ 8 11 1 ~ ~ 8 8 00 11 11 1 - 11 00 5 ŝ 9 S 3 ŝ Ø 00 5 8 0 ~ S 0 30 -1 G C, ~ UIAII ٠ • • 109 109 118 108 MCOIN 9 07 S 10 Ø 80 3 -1 --0 -0 -0 N --2 11 3 24~110 0 10 11 11 11 11 11 11 0 -1 --11 --Ϋ+ -11 -1 --------ц 9 1 7 NO 04 .81 M 3 56 56 85 • 0 9 00 74 97 32 0 16 20 97 3 -51 3 37 3 -27 MIL SO 5 CV. -** -2 σ . ٠ ٠ ٠ ٠ ۰ ٠ ۰ . ۰ . . 13 * 13 3 11 ю - 1 IIN 2 2 S S Ю \$ 5 \$ 3 ŝ 16 S 3 3 3 ŝ \$ 11 -4 --** --------1 4 --------11 11 8 1 - 11 =

5

-

N N N N N

3

-

9 . 97 H 6 July

• -

•

•

•

•

0

	1	DEPTH	TEMP	0	XYGEN-
		E 		5 1	40-
WR GRANITE FOREBAY	345	0	21.4	9.32	108.
/2 MI UP MID R		1			
WR GRANITE FOREBAY	342	0	19.2	8.81	98 .
TTTFF GOOSF FORFRAY	1023	0	20.2	9.22	104.
A MI UP CENTER		,		2	
ITTLE GOCSE FOREBAY	1023	33	19.9	9.22	103.
A WI UP CENTER	1	(
WR MCNUMENT FOREBAY	1042	0	14.5	9°14	101.6
WARNENT FORFACT	1045	N) N)	19.4	9.25	102.6
A MI UP CENTER		;			-
CE HARBOR FOREBAY	1115	0	19.4	9,46	104.
A MI UP CENTER					
CE HAREUR FUREBAY	CIT	5	17.2	7°20	102.
MAKE RIVER-MOUTH	1130	0	19.0	9.71	106.3
CUTH					
CNARY DAM FOREBAY	1252	0	17.9	10.77	115.3
/4 MI UP SPILL SIDE WN.		;			
CNARY DAM FOREBAY	2227	33	11.3	10.60	111.
CLARY DAW FORFRAY	1300	0	17.5	10.52	111.
AL MI UP POWER SIDE OR.					4
CNARY DAY FOREBAY	1300	23	16.9	10.52	110.1
/4 MI UP POWER SIDE OR.	1				
CNARY TAILRACE	1310	0	17.4	10.98	115.6
V4 MI CN SPILL SIDE WN.	NC K	C	2 2 5	10 00	000
AU WT DN DOWED STOF OD	0201	>	C . 1 T	++ ° O T	• ANT
OHN DAY FOREBAY	1438	0	18.6	9°95	107.6
/4 MI UP CNTR	1	1			
CHN DAY FOREBAY	654	5	18.5	10.03	108.
HE DALLES FOREBAY	1510	0	18.3	9.87	105.
14 MI UP CENTER					
HE DALLES FOREBAY	1510	23	18.2	9.87	105.
ONAFUTLE FORFRAY	1530	0	18.3	9.87	105.4
/2 MI UP SPILL SIDE		•	2		2
CNNEVILLE FOREBAY	1530	23	18.3	9°95	106.
ONNEVILLE TAILRACE	1540	0	18.4	11.38	121.
A MI DN SPILL SIDE	1600	c	0 0	00 01	
ASHOUGAL CNTR		•	0.04	02*07	• 0 7 7
RIVER	1630	0	19.1	9°91	107.3

10

P 10

SI.

NOI	TIME	hal I	FT	MG/L (SAT	GEN	ATMOSPHER	ERIC AR	TOTAL PRES	GAS SSURE (SAT	CATE OPEN	SPILL	F FLOW	X JL H	SPILL	HUCH I	81
FOREBAY	950	0	21.9	8.30	97.5	12.26	19	774.9	104.6	0		40.0	740	0		K)
P RESER	952	33	20.9	7.20	82.9	12.31	105.2	744.3	100.5	0	0 • 0	40.0	240	0	31	
ID RESE E FOREB	1025	0		7.95	92.0	2.32	105.6		102.7	0	0 • 0	41.0	638	0	25	
ENTE	1030	33		7.69	88.3	2.62	107.4	768.1	103.3	0	0.0	41.0	638	0	5	
T FO	1053	0		8.13	94.8	2°20	107.9		105.1	0	0.0	43.0	240	0	53	
T FO	1056	30		7.60	87.0	2.32	104.5		100.8	0	0.0	43.0	540	0	25	
FORE	1113	0		8.56	1.99	2.80	109.7		107.3	0	0.0	43.0	0 + +	0	53	
Z O	1115	33		8°39	95.6	3.27	112.2		108.5	0	0.0	0.54	0 11 11	0	33	
ENTE-	1125	0		8.10	91.9	3.15	110.8		106.7	0	0 • 0	0 • 0	341	0	0	
FOREBAY	1245	0		10.49	119.3	+ 0 • +	118.5		118.2	0	0.0	0.4°C	340	18	223	
FOREBAY	1250	53		10.35	112.4	4.40	116.5		115.3	0	0.0	234.0	340	18	222	
CALL SIDE	1255	0		9°°6	114.3	3.93	118.4		117.0	•	0 • 0	234 ° D	340	18	222	
PONER SIDE	1257	3		10.05	109.2	4.22	115.1		113.5	0	0.0	234 ° 0	340	18	222	
CHER SIDE	1301	0		10.49	114.8	4.37	117.0		116.2	0	0 * 0	234 ° U	270	18	222	
PILL SIDE	1310	0		10.14	110.6	4.16	115.0		113.7	0	0.0	234 ° 0	270	18	222	
PEB	1407	•		9°35	104.0	3.33	110.2	818.7	108.7	0	0.0	240°0	265	0	210	
E H	1410	33		60°6	101.1	3 . 33	110.2		108.1	0	0.0	240.0	265	0	210	
FORE	1438	0		9°35	103.4	3.81	113.5		111.1	0	0.0	270.0	160	0	214	
FOR	1442	5		9.26	101.7	3.51	110.3		108.2	0	0 * 0	270°0	160	0	214	
FOREBAY	1500	0		9°44	103.1	3.87	112.6		110.3	17	106.0	241.0	74	64	206	
FOREBAY	1503	50		9.18	100.2	3.45	109.2		107.1	17 3	106.0	241.0	74	64	206	
PILL SID TAILRACE	1510	0		11.49	124.9	6.84	136.3		133.1	11	106.0	241.0	19	64	206	
PILL SI VER	1530	•		9°53	104.0	3.57	110.2		108.7	0	0.0	0.0	26	0	C	
IVER	1550	0	19.7	9.29	101.8	3.51	110.1	821.6	108.1	0	0.0	0.0	14	0	C	

1976 2, August

ПСНСНЫНШНОНОНСНАН УНУНУНУНУНОНОНАНАНУНУНОВО

•

•

.

Appendix Table 11.--Dissolved gas saturation and temperature data for Little Goose spill deflector test March 22, 1976.

LCCATION		M	TEMP F1	NG/L	OXYGEN	ATMOSPHER	ERIC. AR	TOTAL PRE	GAS SSURE (SAT	NO. GATE	HOURLY FLOW KCFS SPILL TOTAL		SAMPLE	MEAN DA FLOW-K	CFS CTAL
TLE GCOSE FOR		0	6.0	12.79	105.5	17.29	108.7	800.2	107.9		0.0	18	638	0	C
TLE S	1715		5.4	12.52	101.8	17.11	106.1	779.3	105.1		0 • 0		638	0	C
LE GOOSE SPI	1030	0	5.6	13.86	113.2	18.40	114.7	846.2	114.2	-	14.0		538	0	0
TLE GCOSE SP	1035		5°4	13.46	109.4	18.23	113.1	831.0	112.1		14.0		538	0	c
TLE GCOSE SP	1110		₽° €	15.73	127.8	20.79	129.0	951.8	128.4	-1	14.0		538	0	c
TLE GOO'SE SP	1115		5.4	15.86	128.9	21.22	131.6	968.9	130.7	H	14.0		538	0	c
A STC. BAY.	1120		5.4	15,60	126.7	21.22	131.6	965.6	130.3		14.0		538	0	c
TLE GCOSE SP	1508		5.4	13.86	112.6	18.74	116.2	854.5	115.3	9	35.0		539	0	c
TLE GOOSE SP	1508	20	5°4	13.86	112.6	18.83	116.8	857.6	115.7	2022	35.0		625	0	c
Z-7 SOUTH S	1520		5°4	13.59	110.4	18.40	114.1	838.9	113.2	9	35.0		539	0	c
TTLF GCOSE SP	1520		5°4	13.99	113.7	18.74	116.2	856.2	115.5	9	35.0		539	0	c
TTLE GCCSE SP	1526	0	5.4	13.59	110.4	18.40	114.1	838.9	113.2	9	35.0		539	0	c
GOOSE SP	1526		5°4	13.86	112.6	18.83	116.8	857.6	115.7	9	35.0		523	0	c
TTLE GOOSE SP	1535	•	5.4	13,33	108.3	17.88	110.9	817.0	110.2	9	35.0		539	0	c
TTLE GODSE SP	1612	•	5° \$	14.53	118.0	19.51	121.0	890°6	120.1	9	60.0		539	0	C
TTLE GOCSE SP	1612	20	5.4	14.80	120.2	20.02	124.2	912.4	123.1	9	60.0		539	0	C
TTLE GOCSE SP	1615	0	5.4	15°06	122.4	20.11	124.7	918.8	124.0	9	60.0		539	0	C
TTLE GOCSE SP	1615	20	5.4	13.86	112.6	18.74	116.2	854 • 5	115.3	9	60.0		539	0	C
TR. ST CSE SP	1620	0	10° t	14.26	115.9	19.00	117.8	868.8	117.2	9	60.0		539	0	C
Y 2-7 GORTH S TTLE GOOSE SP	1620	20	5°4	13.86	112.6	18.57	115.2	848.4	114.4	9	60.0		539	0	C
Y 2-7 NORTH S TTLE GOOSE SP	1627	0	5°4	14.80	120.2	19.77	122.6	903.2	121.8	9	60.0		539	0	C
CTR. ST GOOSE SP	1658	0	5°4	14.93	121.3	19.94	123.7	911.0	122.9	9	85.0		539	0	C
TTLE GCOSE SP	1658	20	5. tt	15.06	122.4	20.28	125.8	925.0	124.8	9	85.0		539	0	c
TTLE GOCSE SP	1700	0	5.4	14.39	117.0	19.43	120.5	885.8	119.5	9	85.0		539	0	C
TTLE GOOSE SPILL AT 2-7 CTR. STA.	1700	20	a. 5	14.80	120.2	19.68	122.1	900.1	121.4	9	85°0		539	0	c

March 22, 1976

.

083

								à							
CATION	TIM	1	EMP	NG/L	GEN	ATMOSP N2 ML/L	ERI AR (S	TOTAL PRE MM HG	GAS SURE (SA	PEP	SPILL	FLOW S TOTAL	SAMP ELE	FLOW-H	KCFS TCTAL
COSE SPI	703	0	20 = t	15.20	123.5	20.37	126.3	929.7	125.4	9	85.0	0.0	539	0	C
OOSE SPILL	1703	20	5.4	14.53	118.0	19.34	120.0	884.4	119.3	9	85 ° 0	0.0	539	0	c
CRTH STA. OSE SPILL	1705	0	5°4	15.20	123.5	20.28	125.8	926.7	125.0	9	85°0	0.0	539	0	С
CTR. STA. OCSE SPIL	1737	0	5.4	15.46	125.6	20.97	130.0	954°7	128.8	9	120.0	0 * 0	540	0	c
SCUTH STA.	1737	20	2°2	15.46	125.6	20.97	130.0	954°7	128.8	9	120.0	0 • 0	240	0	0
SCUTH STA.	1742	0	ະ ເ ເ	15.20	123.5	20.71	128.4	942.1	127.1	9	120.0	0 • 0	540	0	C
CTR. STA. CCSE SPILL	1742	20	5.4	16.00	130.0	21.56	133.8	982.9	132.6	9	120.0	0 ° 0	540	0	c
CTR. STA. OOSE SPIL	1747	0	2°¢	15.20	123.5	20.45	126.9	932.8	125.8	9	120.0	0.0	540	0	c
NCRTH STA.	1747	20	5°4	15,33	124.6	20.79	129.0	946.8	127.7	9	120.0	0.0	540	0	c

S

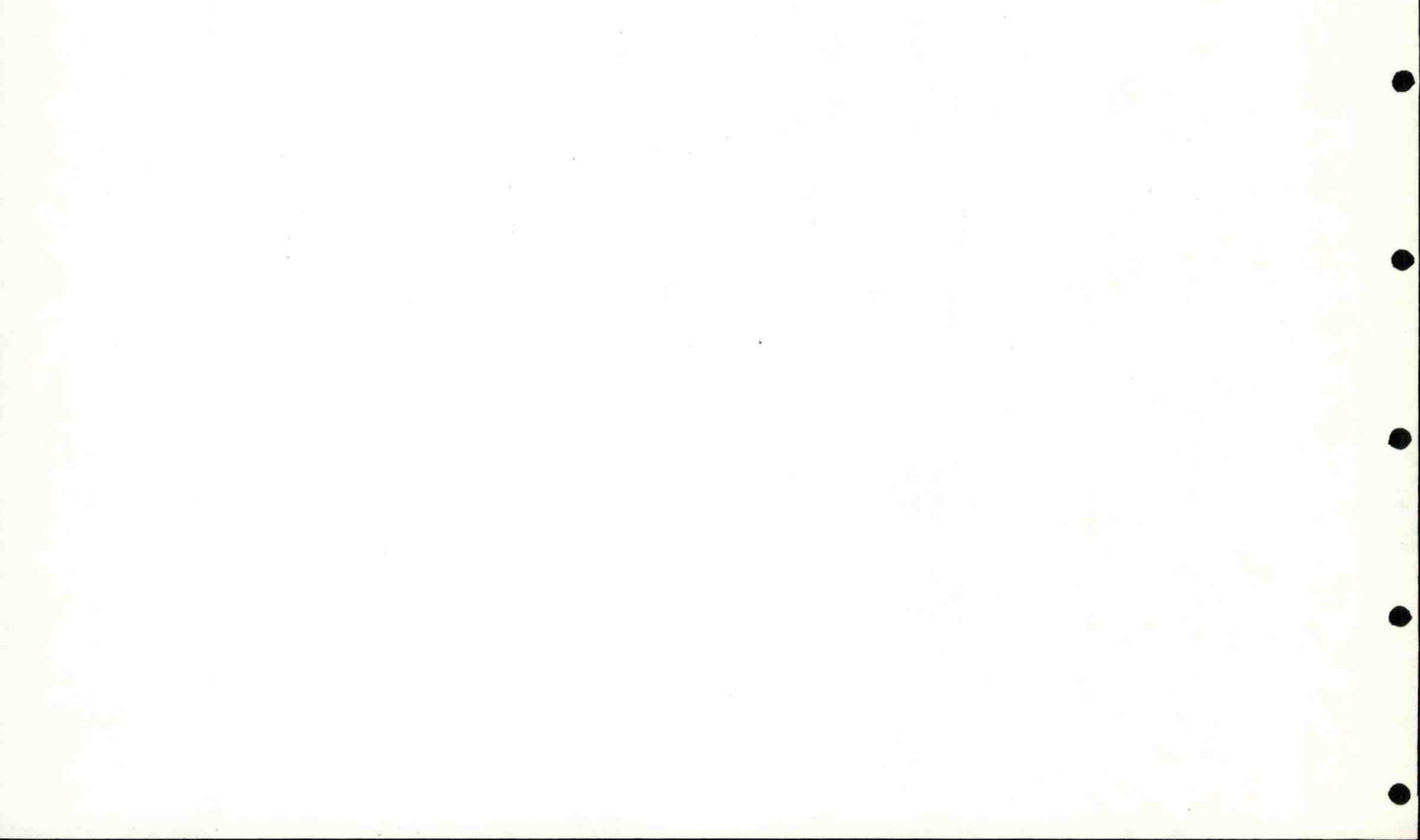
each each each kcfs kcfs 0

each

Marc

•

•


Six

 Spill deflector Bay 5 at 14 kcfs Standard Bay 8 at 14 kcfs Spill Deflector Bays 2-7 at 6 kcfs e Spill Deflector Bays 2-7 at 10 kcfs Spill Deflector Bays 2-7 at 14 kcfs Spill Deflector Bays 2-7 at 14 kcfs 	kcfs		6 kcfs e	10 kcfs	14 kcfs	20 kcfs
 Spill deflector Bay 5 at Standard Bay 8 at 14 kcfs Spill Deflector Bays 2-7 Spill Deflector Bays 2-7 Spill Deflector Bays 2-7 Spill Deflector Bays 2-7 	14	10	at	at	at	at
 Spill deflector Bay 5 Standard Bay 8 at 14 Spill Deflector Bays Spill Deflector Bays Spill Deflector Bays Spill Deflector Bays 	at	kcfs	2-7	2-7	2-7	2-7
 Spill deflector Standard Bay 8 a Spill Deflector Spill Deflector Spill Deflector Spill Deflector 	Bay 5		Bays	Bays	Bays	Bays
 Spill Spill Spill Spill Spill 	deflector	ard Bay 8 a	Deflector	Deflector	Deflector	Deflector
v ² ³ ³ ³	Spill	Standa	Spill	Spill	Spill	Spill
	1.	2.	3.	4.	5.	.9

LITTLE BAY 22-BAY 22-BAY 22-BAY 22-BAY 22-BAY 22-BAY 22-BAY 22-BAY 22-LITTLE LITTLE -

Appendix Table 12.--Dissolved gas saturation and temperature data for McNary spill deflector tests April-July, 1976.

OCATI	21	DEPTH	E E	WG	5 1	N N	SPHERIC	TO M	AL GAS RESSURE HG (SAT	NO. GATE OPEN	SPILL	LY FLOW CFS TOTAL		MEAN FLOW	TCTAL
FOREBA	10	0	6.9	13.12	108.9	17.07	107.8	813.	11		0.0	•	237		
Y FOREBAY	810	60	6.7	13.20	108.9	16.97	106.7	807.0	107.0	0	0 • 0	0 • 0	237	0	С
Y FOREBAY	1405	50	7.0	13.06	109.0	16.97	107.8	810.9	107.9	0	0 • 0	0 * 0	337	0	0
AM	820	0	7.0	13.04	108.5	16.88	107.0	807.2	107.2	-1	5.0	242°U	269	0	с
CR BAY SPILLWA	820	10	6.9	12°99	107.9	16.97	107.3	808.1	107.3	-1	5.0	242.0	269	0	c
CR BAY SPILLWA	830	0	6°9	12,99	107.9	17.07	107.9	811.5	107.8	ч	5.0	242°U	269	0	c
CH BAY SPILLWA	835	0	6.9	13.12	109.0	17.34	109.7	823.6	109.3	*1	5°0	242.0	269	0	C
CR BAY SPILLWA	835	10	6.9	13,25	110.1	17.25	109.1	821.8	109.1	-	5.0	242.0	269	0	C
CR BAY SPILLWA	932	•	7.1	13.25	110.6	17.34	110.2	829.1	110.1	-1	7.0	241.0	269	0	C
CH BAY SPILLWA	932	0	7.1	13,38	111.7	17.56	111.5	838°7	111.4	-1	7.0	241°D	269	0	C
CR EAY SPILLWA	945	0	7.0	13.33	111.0	17.25	109.3	824.7	109.5	ч	7.0	241.0	269	0	C
TCR BAY 5-	950	10	7.0	12.86	107.1	17.07	108.2	811.8	107.8	-1	7.0	241.0	269	0	C
CH BAY SPILLWA	954	0	7.0	12.86	107.1	16.88	107.0	804.9	106.9	et	7.0	241.0	269	0	C
CR BAY SPILLWA	1047	0	6.9	12.73	105.7	17.07	107.9	808.1	107.3	-1	0.6	0 * t t c	269	0	C
CR BAY	1050	10	6.9	13.25	110.1	17.53	110.8	832.1	110.5	e	9.0	244.0	269	0	C
SPILLWA	1049	0	7.0	13.25	110.4	17.43	110.5	830.7	110.3	-1	0°6	0° 4 4 ° U	269	0	c
SPILLWA	1055	10	7.0	13.25	110.4	17.53	111.1	834.1	110.8	-1	9.0	244.0	269	0	c
SPILLWA	1100	0	7.0	13.12	109.3	17.43	110.5	829.0	110.1	-1	0.6	244.0	269	0	C
CR BAY SPILLWA	1155	0	7.0	13.38	111.4	17.90	113.4	849.6	112.8	ы	14.0	252 ° N	269	0	C
SPILLWA	1200	10	7.0	13.52	112.5	17.84	113.0	849.0	112.7	H	14.0	252 ° U	269	0	0
SPILLWA	1203	0	7.0	13,38	111.4	17.80	112.8	846.1	112.4	-1	14.0	252°N	269	0	c
SPILLWA	1206	10	7.0	13.38	111.4	17.71	112.2	842.7	111.9	-1	14.0	252°0	269	•	c
SPILLWA	1209	•	7.0	13.12	109.3	17.34	109.9	825.5	109.6	-1	14.0	252.0	269	0	C
SPILLWA	1325	0	7.0	14°96	124.6	19.65	124.5	935°5	124.2	-1	4°0	237.0	269	0	c
SPILLWA	1325	10	7.0	14.96	124.6	20.02	126.9	949.3	126.0	-1	4 • 0	237.0	269	0	c
C RAY 2															

9 197 • 7 April

MCNARY SPIRE m

•

•

•

U	IME	DEPTH	TEN	0 >	GEN-	M-M	N N N	N M H	S R	and the second se	XXJ	TOT	L L L	LOW	KCFS TOTO
CNARY SPILLWA	1330		7.0	14.43	120.2	19.37 1	122.8	918.3	121.9		10 - 11	237.n	269	0	1
TANDARD RAY 2 CNARY SPILLWA	1330	10	7.0	14.30	119.1	19.37	122.8	916.6	121.7	٦	0 • Ħ	237.0	269	0	C
TANDARD CLARY S	1334	0	7.0	14.70	122.4	19.65	124.5	932 .1	123.8	ч	0°†	237.0	269	0	C
TANDARC BAY 2 CNARY SPILLWA	1432	0	7.0	14.30	119.1	19.10	121.0	906.3	120.3	ч	7.0	241.0	269	0	C
TANDARD RAY 2 CLARY SPILLWA	1436	10	7.0	14.57	121.3	19.56	123.9	926.9	123.1	-	7.0	241 ° N	269	0	C
TANDARC RAY 2 CNARY SPILLWA	1436	0	7.0	14°96	124.6	20.02	126.9	949.3	126.0	н	7.0	241.0	269	0	C
TANDARC RAY 2 CLARY SPILLWA	1440	10	7.0	14.17	118.0	18.91	119.9	897.7	119.2	-1	7.0	241°N	269	0	C
TANDARD BAY 2 CLARY SPILLWA	1443	0	7.1	14.30	119.4	19.10	121.3	908.3	120.6	-1	7.0	241.0	269	0	•
TANDARD RAY 2 CLARY SPILLWA	1538	0	7.0	14.56	121.2	20.20	128.0	950.9	126.3	ч	0.6	244 .0	269	0	0
TANDARD RAY 2 CLARY SPILLEA	1542	0	7.0	14.57	121.3	19.40	122.9	920.9	122.3	-1	0.6	0 . 44c	569	0	0
TANDARD BAY 2. CNARY SPILLWA	1546	10	7.0	14.57	121,3	19.56	123.9	926.9	123.1	-	0°6	0° † † č	269	0	C
TANDARC RAY CLARY SPILLW	1550	10	7.1	14.30	119.4	19.19	121.9	911.8	121.1	r-t	9°0	0.445	269	0	U
TANDARC BAY 2 CNARY SPILLWA	1552	0	7.0	13.38	111.4	17.53	111.1	835.8	111.0	٦	9°0	0° 5 4 6	269	0	
TANDARD BAY CLARY SPILLW	1650	0	7.0	14.51	120.8	19.37	122.8	919.3	122.1	-1	14.0	248.0	269	0	
TANDARC BAY CNARY SPILLW	1654	10	7.0	15.09	125.7	20.20	128.0	957.9	127.2	7	14.0	248.0	269	0	
TANDARD RAY CNARY SPILLW	1656	10	7.0	14.83	123.5	20.04	127.0	948.2	125.9	-1	14.0	248.0	269	o	
STANDARC RAY 21 MCNARY SPILLWAY STANDARD BAY 21	1700	•	7.1	14.43	120.5	19.28	122.5	917.0	121.8	-1	14.0	248.0	269	0	

×.

.

<u>A</u>...

.

300

.

. Cont 1 1976 • -

Apr

.

5

AILY ACFS TCTA	C	C	C	C	C	C	c	C	C	C	C	0	0	C	c	C	C	C	C	C	0	C	C	0	
FLOW-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	•	
SAMPLE ELEV FT 339	269	269	269	269	269	269	269	269	269	269	269	269	269	269	269	269	269	269	269	269	269	269	269	269	
LOW TAL	. u	• 0	0.	0.	• 0	0.	0°4	0°1	0 . 7	0 . 1	1°0	7.0	0 • 2	0°9	C • J	C.0	5 ° N	5.0	5.0	5.0	5.0	5.0	5.0	5.0	

. .

9 7 6 -• 3 --* ч d A

. .

_ "

----5 C I 2 3 2 2 ŝ 2 2 2 2 2 2 2 2 2 SF II 32 33 2 S 2 2 2 2 2 PC) 3 24 PQ. 84) PO) 80 3 PQ. 10 10 863 PG PC) 10 PQ. 10 PF) PC) PC: NC: R > LL 11 10 \$1 KXJ II 0 0 0 0 0 0 0 0 0 0 0 110 C 0 0 0 0 5 0 o 0 0 0 0 0 0 • . ٠ • 0 . • . ۰ H II 60 0 0 60 0 0 0 0 S 5 0 0 0 S 5 5 5 5 5 S 5 S I 5 0.110 5 9 9 S 9 9 5 9 9 9 9 9 S 9 9 9 9 9 9 9 9 9 11 (2) 9 ------------------9~1 --81 -9-1 ----WZ II • F W II 18 80 ŝ 18 18 18 8 18 18 Ø 22 22 22 3 CI I Ð 22 2 2 23 22 23 2 2 OLLIO ----N 2 -N S S ZUOII 2 81 н σ -21 ю 8 S 3 S 3 ~ S (M) -37 P- 11 0 S 2 0 ю 3 -**** PO: σ 3 4-4 -. ٠ • • . . . WAII 0 5 20 σ --0 S 20 5 0 2 S 0 σ 903 3 0 80 0 N) 1 on a on 11 vo σ -N -N 2 11 -2 -S -N -2 2 2 2 S 2 ---2 ADVIIN -----1 -------4 --------1 -SO 11 -1 --5 11 ווסחר 2 * ÷ θ 2 3 0 2 9 Ы 5 Ŧ P 0 0 3 σ 9 ACT IID 5 -~ -~ -. ٠ ٠ 11 . . ۰ . • F D. Э 0 σ δ 90 5 0 -906 -1 66 σ 3 0 9 -8 2 8 -δ II CO N) -0 D' S 5 90 ----89 0 06 σ 2 06 10 5 2 ---ZIIN 0 -5 5 8 S 0 5 00 σ 00 5 00 σ σ S σ 0 5 5 σ 11 00 .. 11 8 5 3 3 3 -5 PO. R) S ~ 0 S 10 C ŝ 5 N) - 10 -..... Ś σ ~ S. -. ۰ ۰ . . -. UI VII · 0 PO 3 121 0 σ -0 0 20 0 0 ю -0 3 ю 2 . σ eri i 9-8 MCOIICO 0 -CV. N 3 3 2 11 CU S 2 N N S CV. S 2 S 3 S 3 CV. RAVIIN CV. ----------------11 -1 --1 ---÷-1 ш -10.00 I+ 11 11 0 33 2 3 05 R 3 ** ю # 3 at . NO. \$ 0 2 3 4 *** ONVIIO 3 rO. σ -N -\$ PO 9 -1 -3 S -10 9 --N -S 0 m 3 -1 N 5 DILSO ± ٠ • EIEII · ۰ . . ۰ . . 30 0 8 8 0 0 00 18 18 18 8 0 8 8 30 00 8 80 8 8 8 00 8 - 8 11 1-0 ---9-1 ------------0~1 0-4 -11 -1 e-i -**A** 11 ... 5 Ø Ø S 5 80 9 8 S 5 ŝ S in the second se (C) 0 ω ທ S 10 S 0 1 - 11 - 1 -. 1 4 11 0 . . . S ~

•

•

0

CATIO		M L L	- SM	GEN (S
-	1615 50	8.9	13.04 11	114
DE	1320 10	8.9	13.83	120
A A	1325 0	8.9	13.57	118
CTR	1328 0	8°9	13.44	117
F P	1330 0	8.9	13.70	119
CTR	1332 0	8°9	14.10	123
-20 CTR 13 SPILLWAY	1335 0	8°9		119
bollan	1337 20	8.9	14.10	123
SPILLAY	1340 0	8.9		121
	1345 0	8.9	13.57	118
-20 CTR 4 SPILLWAY	1346 20	8.9	13.57	118
	1350 0	8°9	13.70	119
CTR 7	1353 0	8.9	13.83	120
	1355 0	8°9	13.43	117
H	1506 0	0°6	13.43	117
ILL I	1508 20	0°6	13.57	118
CTR	1510	0°6	13.70	119
D CTR	1512 20	9°0	13.57	116
LWA	1513 0	0°6	13.43	117
PILLWAY	1516 20	6°0	13.70	11
PIL	1520 0	0°6	13.43	11
PILLWA	1522 20	9°0	13.43	11
PILLWA	1525 0	9°0	13.70	11
PILLWA	1528 20	0°6	13.70	11
SPILLWAY	1532 0	9°0	13.43	11.
5				

- - - -11 > er. ¢, œ CC. œ œ æ CC. œ CL. x α C 11 0 1 0 DLDL DUDUDUDUDUDUDUDU 11 4 12HZUZUZUZUZUZUZU

LOCATION	WI	DEPTH TEMP	TENP	DEPTH TEMP OXYGEN	YGEN	ATMOSPHERIC N2 + AR		TOTAL GAS PRESSURE MM HG (S/	L. F	CATE OPEN	ROUR	NO. HOURLY FLOW SAMPLE GATE KCFS ELEV OPEN SPILL TOTAL FT	SAMPLE ELEV FT	FLOW-	HUUI
SPILLWA	1534			13.43	117.5	18.35		907.5	120.5	18	160.0	325.0	269	0	-
3-20 CTR Y SPILLW	1536	0	0°6	13.43	117.5	18.35	121.7	907.5	120.5	18	160.0	325.0	269	0	c
-20 CTR SPILLWA	1537	0	9°0	13.17	115.2	18.07	119.8	893°1	118.6	18	160.0	325.0	269	0	C
-20 CTR															

schar • J bay 22 er add H S to OWS F ion tract at est P or 41 88 set U gat ern L pat kcfs ٠ B .165 FI Ω at ٠ 0

10 × 10

2 5 F 5 -. 15 - 7 H 12 0 an • 5 8 . m w -13 and 7, . ۰. -· 2 · • ----• 10,4, bays bays thru thru thru kcfs kcfs kcfs kcfs kcfs 6.9 5.28.3 S eco **Defl** with Bays

to kcfs 0 ut kcfs 6 8 at (3-20) bays OL deflect thru U discharg Uniform

21 and 2, • bay 22 bays 1 thru thru

nt.	
Co	
- 9	
197	
13,	

D sample tions F 00

Bays Standard

	EPTH T	TEMP	OXYGEN	GEN	ATMOSPHERIC N2 + AR- ML/L (SA	+ AR	PRESSUP WM HG (GAS SSURE (SAT	CATE CATE	SPILL	LY FLOW CFS Total	The second se	SPILL	
1.12		• 0	12.70	110.7	16.69	110.4		:-	0	0.0	0.0	339	0	
50		8 ° 8	12.58	109.7	16.40	108.5	815.7	108.6	0	0.0	0.0	339	0	0
0		8°8		112.4	17.15	113.2	849.7	112.8	22	72.0	305.0	269	0	C
5 10		8 ° 8		111.8	17.06	112.6	845.2	112.2	22	72.0	305°n	269	0	с
0		8 ° 8		111.2	17.06	112.6	844.04	112.1	22	72.0	305.0	269	•	C
5 10		8 ° 8		111.2	17.06	112.6	844.04	112.1	22	72.0	305.0	269	0	•
0	0	8°8		112.4	17.24	113,8	853°3	113°3	22	72.0	305.0	269	0	С
55 20		8 ° 8		109.0	16.88	111.4	833.7	110.7	22	72.0	305.0	269	0	c
0 0 +	8	8°8		111.2	17.06	112.6	944 .4	112.1	22	72.0	305°n	269	0	c
45 20		8.8		110.8	16.97	112.0	840.2	111.6	22	72.0	305.0	269	0	C
50 0				111.2	17.06	112.6	844°4	112.1	22	72.0	305.0	269	0	C
55 10				111.2	17.06	112.6	944°	112.1	22	72.0	305.0	269	0	•
0 0 0		8.8		111.2	17.06	112.6	844°	112.1	22	72.0	305.0	269	0	C
02 20		8°9		111.2	17.06	112.6	844,04	112.1	22	72.0	305.0	269	0	0
13 20				111.1	17.51	115.5	861.4	114.4	18	72.0	302.0	269	0	0
16 0		8 ° 8		111.2	17.06	112.6	844.4	112.1	18	72.0	302°U	269	0	C
19 20		8°8	13.17	114.6	17.71	116.9	874.8	116.2	18	72.0	302.0	269	0	0
21	0	8.8		113.5	17.34	114.4	858.7	114.0	18	72.0	302.0	269	•	c
25 2	0	8.8		113.5	17.52	115.7	865.8	115.0	18	72.0	302.0	269	0	0
26	0			111.2	17.15	113.2	848.0	112.6	18	72.0	302°N	269	0	C
1228 20		8°8		111.2	17.00	112.2	841.9	111.8	18	72.0	302.0	269	•	c
30	0			111.2	17.15	113.2	848.0	112.6	18	72.0	302°U	269	•	c
32 2	0			112.4	17.24	113.8	853°.3	113.3	18	72.0	302.0	269	0	C
36	0	8.8		112.4	17.24	113.8	853°3	113.3	18	-72.0	302.0	269	0	C
38 2		8.8		111.2	17.24	113.8	851.5	113.1	18	72.0	302.0	269	0	C
						(c)								

April 14, 1976

.

.

4 . 1

ii. 0 0 9 5 JD. 14.2 14.2 S 0 PO ю 0 9 S. 5 S. .. A A 4 4 A A A AAAAA A AA A 211> < A A A ~ 4 ~ MIIO 0 H 11 W L **H H H H H** 8-4 ------------m AHRWRMH H H H H * 8 8 8 8 8 8 8 8 8 8 8 8 0 8 - 1 8 ex ex ex ex ex α α. 02 er er er er er er æ CC II X J X J X X X X X ¢. ZHZHZHZHZHZHZHZHZHZHZH 24 IZHZHZLZLZLZLZL 2 24 - 11 4 24 24

0

•

		ь.							<	0	ē	-	Q. X	AN	IL
Ľ	U W	-	d F	WG/	TAT	ATMOS	+ AR- + SA-	A M M M	4 7 - 1	• F W II	וו ב	10	ELEV	IL a II	KCFS TOTA
124	0	• • •		12.78	111.2	17.24		851.5	1 10	80	72	302.0	269		
140	0 20	80	8	13.83	120.3	19.09	126.0	937 ° 3	124.5	18	248.0	367.0	269	0	
140	2	80	e0 •	13.57	118.0	18.63	123.0	915.9	121.6	18	248.0	367.0	269	0	
140	5 20	8	8.	13.96	121.5	19.09	126.0	939°1	124.7	18	248.0	367.0	269	0	
740	8	8	0.	13.96	121.5	19.27	127.2	946.3	125.6	18	248.0	367.0	269	0	
141	2 20	8	6 9	14.00	121.8	19.37	127.8	950.4	126.2	18	248.0	367.0	269	0	
141	2		8.8	14.09	122 . 6	19.37	127.8	921.6	126.4	18	248.0	367.0	269	0	
142	20 20		8.8	13,96	121.5	19.27	127.2	946.3	125.6	18	248.0	367.0	269	0	
142	54		8.8	13.96	121.5	19.00	125.4	935.5	124.2	18	248.0	367.0	269	0	
142	26 20		8.8	14.09	122.6	19.18	126.6	944.2	125.4	18	248.0	367 ° N	269	0	
142	63	8	8.8	13.83	120.3	19.09	126.0	937.3	124.5	18	248.0	367.0	269	0	
143	52 20		8.8	13.96	121.5	19.00	125.4	935.5	124 .2	18	248.0	367.0	569	0	
243	35 0		8.8	13,96	121.5	18.81	124.2	928°4	123.3	18	248.0	367.0	269	0	
	-														
IS Sampre															
.W. gate	open	ning	g pa	attern	172	kcfs	total								
Deflect	or Ba	ays	27	kcfs	thru	bays bays	3, 5,	7, 9, 8, 10	16, 1	18 a 12,	nd 20	14, 15	, 17, 8	and 19	
ard Bays			3	.8 kcf	fs thr thru	ru bay	rs l an 2 and	nd 22 21.							
rm disch	arge	thr	J	defle(ctor	bays ((3-20)	at 4	kcfs-	-72	kcfs	total.			

nt
Co
I
76
19
4,
T

Thr • Apr

	ATLY KCFS TCTAL	1	с	с	0	c	c	C	С	c	0			t.				
	PEAN D FLOW-	1	0	0	0	0	0	0	0	0	0				л.		20	
	I JL I	338	269	269	269	269	269	269	269	269	269			and 19	۰		, and	
	PLOW	IC .	96 ° D	96°N	96。D	96.0	96.0	96.0	84 ° U	84 ° U	84.0			, 17,			17, 19	
	HOURLY KCF	0.0	5.0 2	5.0 >	5.0 2	75.0 2	5.0 2	5.0 2	3 ° 0 3	3.0 3.	3.0 3.			d 20 3, 15			16,	
	NO. GATE OPEN S		22 7	22 7	22 7	22 7	22 7	22 7	22 16	22 16	22 16			, an 2, 1			12,	
	S SAT SAT	8.7	9°3	6.4	24 24	6.0	4.8	6.3	1.9	2.0	1.5			6, 18 11, 1			, 12,	
. 26	TAL G PRESS HG		.2 11	• 8 11	•6 11	.8 11	.6 11	.1 11	• 9 12	. 8 12	•1 12		28	9, 10, 1			8,9	21
1	O ∑ Z	891	898	876	868	873	864	876	917	918	915			6.8	22		7, 7, 11 15	and
une 9	HERIC + AR-	118.6	120.1	117.2	116.0	117.0	115.4	117.0	123.0	123.7	123.0		tal	3, 5, 4, 6,	1 and 2 and	otal	3, 5, 4, 6, 13 an	2 1, 2,
Ĵ	ATMOSP N2 ML/L		16.43	16.06	15.87	16.01	15.78	16.01	16.80	16.89	16.80	••	fs to	bays bays bay 1	bays	kcfs t	bays bays bays	bay 2
	EN===		117.8	115.0	114.0	113.7	114.0	115.3	119.J	117.4	117.6	119%	75 kci	thru l thru l	thru l	163 ko	thru l thru l thru l	thru l thru l
	MG/L (11 11	2.11	• 85	1.72	1.70	1.72	• 85	• 24	• 05	• 07	N2 at	u	kcfs t kcfs t	kcfs t kcfs t	rn	kcfs t kcfs t kcfs t	kcfs t kcfs t
	٥.	2	.6 2	• 5 11	•6	•6 1	•6 1	.6 11	•7 12	• 7 12	• 7 12	ay N	att	0.0 m	œ. O.	atte		
	H X H	11	0 13	0 13	0 13	0 13	0 13	0 13	0 13	0 13	0 13	oreh	ng p	C 4D	Sr.	ng p	Surger S	ŝ
	IME		207	212 2	220	223 2	225	227 2	310	315	325 2	ith f	openi	r Bay		openi	r Bay	
			-4	-1	1	4	F	e	-1	-	-4	Led W	ate	ecto	ays	ate	ecto	ays
												samp]	W. 8	Def1	Ird B	W. 8	Def1	rd B
	LCCATIO		SPILLWAY	Y SPILLWAY	Y SPILLWAY	SPILLWAY	SPILLWAY	PILLWAY	SPILLWAY	SPILLWAY	RY SPILLWAY 1-22 CTR 13	nditions	1. 0.D.F.	Spill	Standa	2. 0.D.F.	Spill	Standa

6

•

•

•

2

•

0 TWO V-

						ATMOCOL	5	TOTA	<	NO		V FLOW	SAMPIE	MEAN DI	-	
CCATION	TIME	DEPTH M	TEMP	MG	N=	NL/L	SAT S	MM HG	SURE	GATE	SPILL TOTA		₩F	FLOW-	KCF'S TCTAL	
Y FORE	645	30	13.6	12.19 11	8.8	16.07	117.7	883.7	117.6	0	0.0	0.0	338	<u></u>	1	
SPILLWAY	950	0	13.6	12.74	123.8	17.17	125.5	939°2	124.7	22	249.0	466.0	271	0	С	
T SPILLW	953	20	13.6	12.37	120.3	17.17	125.5	933.8	124.0	22	249.0	466.0	271	0	C	
Y SPILLWA	955	0	13.6	12.37	120.3	17.26	126.2	937.7	124.5	22	249.0	466 ° N	271	0	С	
Y SPILLWA	957	20	13.6	12.89	125.3	17.41	127.2	951.7	126.4	22	249.0	199h	271	0	c	
Y SPILLWA	1000	0	13.6	12.24	119.1	16.89	123.5	919.9	122.2	22	249.0	466 ° N	271	0	С	
Y SPILLWA	1003	20	13.6	12.24	119.1	17.07	124.8	927.9	123.2	22	249.0	466.0	271	0	0	
Y SPILLWA	1004	0	13.6	12.40	120.5	16.80	122.8	918.3	121.9	22	249.0	466 n	271	0	с	
Y SPILLWA	1009	20	13.6	12.24	119.1	17.07	124.8	927 ° 9	123.2	22	249°0	466 ° N	271	0	0	
Y SPILLWA	1012	0	13.6	12.64	122.9	17.35	126.9	945.6	125.6	22	249.0	466 ° N	271	0	с	
Y SPILLWA	1013	0	13.6	12.77	124.1	17.63	128.9	959.4	127.4	22	249.0	466.0	271	0	a	
Y SPILLWA	1015	0	13.6	12.50	121.6	17.26	126.2	939°7	124.8	22	249.0	466.0	271	0	С	
=22 CTR																ŧ.

88 81 88

total kcfs

 \circ 2 and 9 19 9 -18, and and 5 · 2 · 6 Η • 5 and 11 74, 3 10 13 4 6 9 J C bays bays bays bays bays bay bay J J J 1 1 J J

22 and 21 • Γ 2 bays bay μ J

thr

S

kcf

H

12

at 119% forebay N2 with test

One

249 pattern opening gate • M • F1. 0.D

	(ľ
	7.3.1	kcfs	thru
		kcfs	thr
	10.61	kcfs	thr
Deflector		kcfs	thr
	/13.8	kcfs	thr
		kcfs	thr
	C16.8	kcfs	thr
	(
	(11.21	krfs	thr

S Bay Ъ G pu S

a a a a 12H27272727272727272727272727

EBAY 830 EBAY 1145 EBAY 1605 LLWAY 817		FT	MG/L	(SAT	ML/L	(SAT	NM HG	SA	OPEN	SPILL	-		SPILL	ICIA
BAY BAY LWAY AY 5 AY 5	20	17.1	10.66 112.0	112.0	14-42 11	113.2	846.6		0 11	0 • 0	•	3399	10	11
LWAY AY 5 AY 5	50	17.4	10.77	114.0	14.61	115.3	861.9	114.7	0	0.0	0.0	339	0	C
WAY Y S	20	17.9	11.25	120.2	14.21	113.2	859°3	114.4	0	0.0	0.0	338	0	C
	0	17.0	10.58	110.7	14.56	113.8	850.1	112.9	4	4 ° D	234°0	269	0	C
	20	17.0	10.54	110.3	14.56	113,8	849.6	112,8	-1	4 ° 0	234 ° N	269	0	c
4	0	17.0	10,66	111.5		115.5	861.1	114.3	-1	4°0	234.0	269	0	C
LWAY 826	0	17.0	10.66	111.5	14.58	113.9	852.2	113.2	-1	4 • 0	234 ° 0	269	0	0
LWAT 828	0	17.0	10,66	111.5	14.77	115.5	861.1	114.3	4	4 ° 0	234 ° U	269	0	C
LWAY 935	0	17.1	10.77	113.0		116.8	871.0	115.6	-	7.0	239.0	269	0	0
LWAY 5 LWAY 938	20	17.1	11.00	115.4		117.3	877.9	116.6	-1	7.0	239.0	269	0	0
LWAY 5 940	0	17.1	10,89	114.2		117.9	879.3	116.8	-1	7.0	239°0	269	0	0
LWAY 942	20	17.1	10.74	112.6		116.8	870.4	115.6	н	7.0	239.0	269	0	C
LWAY 945	0	17.1	10.66	111.8		115.1	859.4	114.1	-1	7.0	239 ° N	269	0	C
LWAY 1132	0	17.2	11,82	124.2	342	126.4	944,04	125.4	-1	0 • ħ	237.0	269	0	C
LWAY 1135	0	17.2	11.69	122.9	16.04	125.9	939.2	124.7	-1	0 • tt	237.0	269	0	0
	20	17.2	11.69	122.9		127.0	945.6	125.6	ы	th . 0	237 ° N	269	0	C
	0	17.1	11.81	123.8	16.11	126.2	942.5	125.1	-1	4.0	237.0	269	0	0
LWAY 2141	20	17.1	11.58	121.4	15.90	124.5	929.1	123.4	1	4 ° 0	237 ° N	269	0	C
	0	17.3	11.81	124.4	16.19	127.3	949.6	126.1	-	7.0	240.0	270	0	C
	20	17.2	11.69	122.9	15.83	124.2	929°5	123.4	*4	7.0	240°U	270	0	C
and the second se	0	17.2	11.81	124.1	16.32	128.1	954°0	126.7	-1	7.0	240.0	270	0	0
LWAY 1244	20	17.2	11.69	122.9	16.25	127.5	948.9	126.0	-	7.0	0.044	270	0	C
LWAY 1247	0	17.1	11.58	121.4	16.04	125.6	935°5	124.2	-1	7.0	240.0	270	0	C
LWAY 1348	0	17.1	11.12	116.6	14.70	115.1	866.9	115.1	22	72.0	310.0	270	0	c
LWAY 1350	20	17.3	11.00	115.9	14.77	116.1	871.6	115.7	22	72.0	310.0	270	0	0

9 5 -• 5 uly

•

•

5

ec. нананананананананана 1 F Bauel . -8-4 --0 ۵. a ۵. ۵. α. a na n a. 0 ۵. m

	1																								
CFS	0	0	С	C	C	C	C	C	C	C	0	C	C	0	C	0	0	С	C	C	C	0	C	c	
ZOJI	0	0	D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	24
A M P	270	270	270	270	270	270	270	272	272	272	272	272	272	272	272	273	273	273	273	273	273	273	273	273	
2-44	310.0	310.0	310.0	310.0	310.0	310.0	310.0	401.0	401.0	401°U	401.0	401.0	401°U	401.0	0.104	485.0	485.0	485.0	485.0	485°0	485.0	485.0	485°0	485°0	
	72.0	72.0	72.0	72.0	72.0	72.0	72.0	165.0	165.0	165.0	165.0	165.0	165.0	165.0	165.0	249.0	249.0	249.0	249.0	249.0	249.0	249.0	249.0	249.0	
SATE OPEN	II CV	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	
N N N	114.2	113.1	114.1	114.4	114.6	113.6	111.0	113.1	113.5	119.2	121.2	119.4	119.2	119.4	119.4	120.7	124.6	124.3	122.5	123.0	122.2	122.9	122.9	123.4	
TOTAL GA	860.	852°0	859°5	861.5	863.2	855.7	835.6	852.0	854.3	897 °4	912.3	898.8	897.7	898°8	898°8	908.9	938.2	935°7	922.2	926.3	919.8	925.7	925.7	929.5	
ERIC AR	114.5	113.7	114.9	115.1	115.6	114.3	110.4	113.7	113.7	119.4	122.0	120.1	120.3	120.1	120.1	121.5	125.4	125.2	123.3	123.9	123.3	123.8	123.8	124.4	
ATMOSPHERI(N2 + AR. ML/L (S)	14.56	14.45	24.45	14.64	14.70	14.54	14.05	24.45	14.45	15.19	15.51	15.27	15.30	15.27	15.27	15.51	16.00	15.92	15.68	15.76	15.68	15.68	15.68	15.76	
GEN ATMOSPH	114.7	112.6	112.6	113.4	112.6	112.6	114.1	112.6	114.1	120.1	120.1	118.6	117.2	118.6	118.6	119.6	124.2	123.2	121.6	121.9	120.1	122.2	122.2	122.2	

1.

y 15, 1976 - Cont.

41 > NLX ຄ S 5 8 S ~ •26 84 5 41 9 9 3 m ONIIO 5 3 5 --5 S 5 ~ ŝ S 5 \$ ŝ 5 9 3 2 0 3 -8 5 3 9 0 11 00 9 9 9 ~ . • ٠ . ٠ ٠ ٠ ۰ . 8 Z 11 0 11 11 11 11 -1 --11 11 10 11 11 -11 -0 0 110 0 0 0 0 0 . ---1 -------11 -1 -1.00 -11 11 0 5 5 ŝ S 10 5 3 5 3 5 • 1 3 5 3 3 3 5 ZHHM 10 3 3 3 3 ٠ ٠ • . WLL II . • 17 17 17 17 ~ 17 17 ~ 17 2 17 -5 ~ -~ 5 2 ~ 111 -8-~ 5 ---------1 -----11 -1 -4 ---I 11 DEP7 0 0 20 20 0 0 20 20 0 20 0 0 0 20 0 0 110 0 0 0 0 0 0 0 2 CV. S 14 11 1603 0.2 1601 555 559 553 557 1550 552 508 510 506 1453 1456 1502 1503 1504 1405 1407 605 401 403 E II IO 358 HIID 9 P 11 M ---1 --1 -----11 -1 ---11 11 0 PO m PO 0 0 3 0 0 0 σ 0 0 0 11 PO . M 0 0 0 てんてんかんわんてんてんて AP AP AP ~ > AF AF AF AF AF t > 人 ち 人 ち 人 て 人 て 人 て 人 こ 4 4 4 A A 4 4 4 A 4 4 A 4 A 4 A A A ZHA 4 A A 4 A **JFJFJFJF** --------1------エニュアーア -------1--- 11 -H -AIIM --UIIANANANANANANA 8 11 まする 4 m A M A M ~ > 人下人下人下人下人下人下人下人下人下人下人下 11 > n > n > n > n > n > ~ >

deflector vs standard bay

•

•

•

۲

20 14, 15, 17, and 19

, 19, and 20

Two comparisons were made of sining patterns. ector and Standard Bay ector and Standard Bay	thru bays 3, 5, 7, 9, 16, 18 thru bays 4, 6, 8, 10, 11, 1 thru bays 1 and 22 thru bays 2 and 21	bays 14 bays 3, 5, bays 4, 6, bays 10 and bays 15, 13	thru bays 1, 2, 21	bays bays bays bays bays	thru bays 1, 21, and 22 thru bay 2
ec lini J					

15,	1976 - Cont.	
tes,	sts with warm water temper and 3 tests with 0.D.F.W.	atures. gate ope
Ŀ.	Single bay flows at 4 kc	fsDefl
2.	Single bay flows at 7 kc	fsDefl
°.	O.D.F.W. pattern72 kcf	s total
	Spill Deflector Bays	2.0 kcfs 4.0 kcfs
	Standard Bays	2.8 kcfs 4.0 kcfs
4.	O.D.F.W. pattern165 kc	fs total
	Spill Deflector Bays	4.0 kcfs 5.6 kcfs 7.3 kcfs 8.9 kcfs 0.6 kcfs
	Standard Bays	7.2 kcfs 8.3 kcfs
2.	O.D.F.W. pattern249 kc	fs total
	Spill Deflector Bays	 4.0 kcfs 8.9 kcfs 0.6 kcfs 3.8 kcfs 7.0 kcfs
	Standard Bays	1.2 kcfs 2.1 kcfs

LCCATIO		J. I	DEPT	H TEMP	MG/L		ATMOSP N2 ML/L	SPHERIC	TOTAL PRE MM HG	SAT SAT	GATE OPEN	5	S TOTAL	N H	SPILL	KCFS TOTAL
Y FOREB		840	105	17.1	10.92	114.7		110.9	637.5	111.5	10	0.0	0.0	339	0	
Y FOREB		1200	20	17.5	-	117.9	-	114.4	862.4	114.8	0	0 . 0	0 • 0	339	0	С
Y SPIL	۰. ۲	742	0	17.2	10.83	113.8	14.70	115.3	863.9	114.7	7	0°6	239 ° 0	269	0	C
CTCR Y SPI	5	245	20	17.2	10.83	113.8	14.62	114.7	860.2	114.2	-	0°6	239°N	269	0	c
CTCR BA	5	748	0	17.2	10.69	112.3	14.37	112.8	846.6	112.4	-1	0°6	239 ° D	269	0	C
CTCR Y SPI	ŝ	750	20	17.1	10.83	113.6	14.21	111.3	839 ° 9	111.5	el	0 • 6	239°0	269	0	C
CTCR Y SPI	ζ	753	0	17.1	10.83	113.6	14.37	112.6	847.04	112.5	-1	0 * 6	239°0	269	0	C
CTCR Y SPI	5	904	0	17.2	10.98	115:4	. 14:70	115.4	866.3	115.0	r1	14.0	248.0	270	0	c
CTCR	5	906	20	17.2	10.83	113.8	14,62	114.7	860.2	114.2	-1	14.0	248.0	270	0	c
CTCH	5	908	0	17.1	10.98	115.1	14:70	115.1	864.6	114.8	-1	14.0	248°0	270	•	e
CTCR	5 2	910	20	17.1	11.01	115.4	14.54	113.9	857.6	113.9	-1	14.0	248.0	270	0	e L
CTCH	5	912	0	17.2	10.83	113.8	14.62	114.7	860.2	114.2	-1	14.0	248°D	270	0	C
CTCR	<u>۲</u>	1006	0	17.3	11.84	124.7	15.60	122.6	923°1	122.6	-9	0°6	238.0	270	0	c
ARC P	- >	1009	20	17.3	12.13	127:77	16.09	126.5	950.2	126.2	-1	9°0	238.0	270	0	0
ARC BA	L Y	1010	0	17.3	12.13	127.7	16.09	126.5	950.2	126.2	1	0°6	238°N	270	0	C
ARD P	۲ ۲	1012	20		12.06	126.9	16.17	127.1	952.8	126.5		0°6	238.0	270	0	0
A SPI	1	1014	0	17.3	12.13	127.7	16.00	125.8	946.5	125.7	-1	0°6	238.0	270	0	0
SARC RAY	1000	1105	0	17.4	11.98	126.4	16.17	127.4	953.4	126.6	-1	14.0	242 .0	269	0	C
ARC BAY	1	1107	20	17.3	12.27	129.2	16.25	127.8	960.0	127.5	-1	14.0	242°U	269	0	C
DARD HAY RY SPILLW	1 1	1109	0	17.4	11.69	123.4	16.00	126.1	941.2	125.0	~	14.0	242.0	269	0	
DARC RAY RY SPILLW	17	1111	20	17.3	12.15	127.9	16.46	129.4	967.5	128.5	u-6	14.0	242.0	269	0	C
TANDARD BAY 2 NARY SPILLWA TANDARD BAY 2	21	1114	0	17.3	11.84	124.7	15.76	123.9	930.6	123.6	-	14.0	242.0	269	•	0
ompa	ons with	Warm	wat	er te	empera	tures.						a.				
1. Sing	gle bays	flows	at	9 kc	cfsD	eflect	COL VS	Standar	lard							
2. Sing	gle bay f	lows	at	14 k	kcfsD	.Deflect	COL VS	Standard	dard							

1976 6, -July